Enclosure 11

Gravity Sewer Assessment prepared by Willow and Sparrow, Revision 3, dated 25 May 2022

Willow+ Sparrow

Gravity Sewer Assessment

James Creek Development

for WM Developments Pty Ltd

Document Control

Revision number	Description	Prepared	Reviewed	Issued	Issue date
0	Draft Report	GC	MC	GC	19/10/2021
1	Final Report	GC	MC	GC	21/10/2021
2	Updated design flows	GC	RY	GC	20/5/22
3	Updated Attachments	GC	RY	GC	25/5/22

Document Title:	Gravity Sewer Assessment - WM Developments Pty Ltd
Author:	Garon Clough, <i>BEng</i>
Client name:	WM Developments Pty Ltd
Client's representative:	Mike Willoughby

Approved for use by:	m	
Name: Michael Chamberlain	Signature:	Date: 19/10/2021

Willow and Sparrow Pty Ltd ABN 28 438 185 159 Alstonville NSW 2477 +61 401 415 220 michael@waseng.com.au www.waseng.com.au

© Willow + Sparrow Pty Ltd. Copyright in the whole and every part of the document belongs to Willow + Sparrow Pty Ltd and may not be used, sold, transferred, copied, or reproduced in whole or in part in any manner or form in or on any media to any person other than by agreement with Willow + Sparrow Pty Ltd. This document is produced by Willow + Sparrow Pty Ltd solely for the benefit and use by the client in accordance with the terms of engagement. Willow + Sparrow Pty Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

INTRODUCTION

This Gravity Sewer Assessment report was developed for the purpose of determining the best infrastructure outcomes for the servicing of sewer infrastructure for a residential development (The Development), located at Lot 104 DP 751388 James Creek Rd, James Creek NSW. This report summarises the preferred sewer supply of gravity reticulation and a transfer pump station to the designated connection point. Gravity sewer reticulation is suitable for the development based on the site characteristics and lot layout configuration. Gravity sewer preference for this development aligns with Northern Rivers Local Government Development and Design Manual, section D12.05, "All lots shall be serviced by gravity sewers wherever possible", which has been achieved.

1 GRAVITY DESIGN

The Development is proposed to service an area of 33ha and provide development of 327 residential lots. In order to complete the gravity sewer assessment, including calculation of design flows in accordance with WSAA 02 Part 1 the following site-specific information was utilised and included in appendixes.

Appendix A - Water and Sewer Servicing Plan – Geolink

Provision of concept layout and number of residential lots to be serviced. Includes provision to reduce the average dry weather flow from the WSAA value of 180L/EP/day to 150L/EP/day on the advice provided by Council.

Appendix B - Preliminary Geotechnical Report – Regional Geotechnical Solutions

Provision of preliminary ground conditions indicating silty/sandy clay overlaid with weathered sandstone. Groundwater was not encountered within any boreholes drilled during the investigation. Given the topography of the site and minimised depth of sewers ground water infiltration is not anticipated to be a major contribution to sewer flows.

Appendix C – Gravity vs Pressure Sewer Submission – WM Developments

Comparison of gravity versus pressure sewer systems for servicing the development. The costs and comparisons were developed in consideration for sites specific attributes, whilst Willow and Sparrow have not developed the comparison it is generally agreed that the costs are reflective of the developer's intention to build and construct a cost-effective sewer system for the development.

1.1 GRAVITY CONCEPT DESIGN FLOWS

Design flow from the development is 20.8L/s with gravity sewer servicing. This value is calculated in accordance with Sewerage Development and Design Manual and WSA02 Part 1. The Design flow includes provision for Peak Dry Weather Flow, Ground Water Infiltration and rainfall dependent inflow and infiltration.

WSAA Design flow = PDWF + GWI + IIF	1	20.8	L/s
lif			
IIF = 0.028 * A _{EFF} *C * I	•	11.5	L/s
Residential - A _{EFF} = A × (Density/150) ^{0.5} for Der	sity<150EP/Ha	13.35	
Com/Ind - A _{EFF} = A x (1-0.75 x Portion _{Impervious})		0.25	
C = S aspect + N aspect	Soil Aspect Vetwork defect	0.9 0.4 0.5]
l 1,29.38%	1	40.88]
Factor _{Site} = (40/A)0.12	•	1.02	
Factor cantoinmont		0.8	in 1 year
I = I _{1,2} x Factorsize x Factorconteinment	•	33.5	
PDWF			
PDWF = d * ADWF	•	9.1	L/s
ADWF = 0.0028 * EP		2.9	L/s
d = 0.01(log A)4 - 0.19(log A)3 + 1.4(log A)2 - 4.	66log A + 7.57 🏅	3.1	
GWI			
GWI = 0.025 * A * Portion wet	•	0.2	L/s
Assumed (Portion wet)	۲	30%	1

Figure 1 Design flow calculation

1.2 DISCUSSION OF LOADING RATES APPLIED FOR RESIDENTIAL DEVELOPMENT

A design loading of 240L/EP/day was used for design loads for this development. This loading rate for a residential development is the amount of water, in litres, that each person discharges to the sewer network each day. This is also combined with a factor of 3.2 people in each and every house, which is significantly higher than the previous census information for Clarence Valley, which indicated an average household occupancy of 2.3 people.

Considering not all water consumed is discharged to sewer, the value of 240L/EP/day represents a significant increase above the actual and realistic load generated by residential development. WSA02 Part 1 generally recommends 180L/EP/day, and Council had previously indicated a design loading of 150L/EP/day. These values more accurately reflect the residential water consumption and subsequent sewer discharges in the northern rivers of NSW. Designing for loading above and beyond the anticipated realistic loading from the catchment increases residence time for sewerage to reach the discharge location during dry weather, creating potential for odour.

1.3 WET WEATHER RESPONSE

The design flow rates for the development include a provision for wet weather response. This considers both ground water infiltration and inflow to the sewer network. The calculation of these flows has been undertaken in accordance with Sewerage Development and Design Manual and WSA02 Part 1 and represents a 7 times average dry weather flow increase for wet weather response. The topography of the site being a gentle slope, and the preliminary geotechnical investigations identifying no ground water observed, may indicate the conservative allocation of wet weather response to be overestimated for this catchment.

1.4 SPS AND RISING MAIN CONCEPT DESIGN SIZING

To determine the required duty of the sewer pump station the alignment and sizing of the rising main was reviewed and assessed. A DN200 PE100 SDR11, 5.1km main has been determined to be the most suitable for transfer of all sewerage flows generated from the site. The rising main has been sized to accommodate the required 20.8L/s. The resultant flow velocity and approximate head loss due to friction through the main is 1.01m/s and 49m respectively. The rising main preliminary design is included in **Appendix D**.

2 ALTERNATE SERVICING OPTIONS

It is understood that Clarence Valley Council prefers low pressure sewer servicing option of the development as outlined in Clarence Valley Council Pressure Sewer Policy V6. The Policy includes the following statements which have been extracted in totality and subsequent comments provided:

1. Policy Statement

Clarence Valley Council will permit the installation of pressure sewerage systems to provide sewerage services where other forms of sewerage cannot be effectively or economically used, or where pressure systems have particular environmental, economic or social benefits. While pressure systems are an internationally recognised sewerage system, they are sufficiently different to gravity reticulation systems to require a separate policy statement.

Gravity Sewer servicing can effectively be used for the development based on the gently sloping site topography and favourable geological conditions. The benefits of pressure system for the development of James Creek in relation to environmental, economic or social factors have not been provided by Council and as such gravity system remains suitable and preferred option from the developer.

4. Use of Pressure Sewerage Systems in Clarence Valley

Pressure sewerage systems may be permitted where they represent a more appropriate or cost-effective method of sewerage than conventional gravity systems. Their adoption should not be assumed in any application.

4.1 Where Can Pressure Sewerage Systems be used in Clarence Valley?

As a general principle, pressure sewerage systems may be permitted either: a) In sewerage catchments where Council has resolved that pressure sewerage is to be

the method of providing reticulated sewerage,

b) Within developments where pressure sewerage is demonstrated to be a significantly lower overall life cycle cost option for Council than gravity sewerage.

WSA 07 Pressure Sewerage code of Australia, Section 1.2.4 Advantages and Disadvantages – provides some general commentary on pressure sewer systems.

"Life-cycle costs for pressure sewer systems may be higher than conventional gravity systems because of the life expectancy of the mechanical and electrical items and higher operation and maintenance costs. However, conventional gravity systems that incorporate traditional pumping stations or vacuum pumping stations can reverse this situation."

The construction and operational costs have been prepared by WM developments and indicates that pressure sewer will not contribute a significantly lower overall life cycle cost option.

4.2 Likely General Applications of the Pressure Sewerage Systems

The most common applications for pressure sewerage in the Clarence Valley area are likely to be:

• Areas where Council has resolved that pressure sewerage will provide the centralised reticulation. This currently includes Lawrence, Iluka, and the West Yamba, Gulmarrad and James Creek urban release areas,

Although Council has resolved that pressure sewerage will provide the centralised reticulation for James Creek, it conflicts with the Pressure Sewer Policy Statement as gravity sewer servicing can effectively be utilised for the catchment.

3 SEVICING FUTURE GROWTH

The connection of the development to the sewer discharge location facilitates opportunity to concurrently consider future growth in James Creek. In reference to the Maclean Urban Growth Local Growth Management Plan 2011, a total area of approximately 100 ha is potentially available with indicative lot yields of 290 to 1000 dwellings. In consideration of potential servicing options, the following scenario is considered.

Development	Total Area (ha)	Residential Area	Residential Lots (ET)	Commercial	Commercial Lots (ET)
James Creek Development	33	32	326	1	1
Future Growth James Creek	67	50	500		
Total	100	82	826	1	1

Assessing the demand under this scenario results in the following design flows in accordance with WSA 02 Part 1

Development	Design Flow L/s
James Creek Development	20.8
Future Growth James Creek	26
Total	46.8

The proposed sewer pump station and rising main for the development proposal is not currently, however, can be sized for future growth options. A viable option is dual rising mains which facilitates staging and servicing of the entire growth area when considered with staged pump capacity. Installation of the rising mains concurrently provides cost and amenity benefits with reduced disruption to the community and consideration of growth option is recommended in further development of the sewer servicing of James Creek.

4 RECEIVING SEWER IMPACTS

James Creek Development can be effectively serviced by gravity sewer. Design flows from the development are 20.8L/s inclusive of allowance for inflow and infiltration in accordance with WSA 02 and the design flow of 240L/EP/day from Council. In comparison, a low pressure sewer for the same EP loading would have a design flow of 9.1L/s as calculated by WSA 07, thus resulting in an increased peak discharge of 11.7L/s from the gravity system.

Consideration of the impacts on downstream sewer infrastructure of this development is estimated due to limited information available to assess the capacity of the existing system. It is understood the current downstream pump stations have capacity as outlined below:

Pump Station	Design Flow Capacity L/s
SPS 9	92.5
SPS 8	153.7

It is assumed the downstream pump station capacity is sufficient to service the entirety of James Creek Growth Area under a pressure sewer regime. Thus, the only potential increased demand from this development under gravity servicing is 11.7L/s. The increase in peak discharge is not expected to be significant to require substantial downstream upgrades.

In the event the downstream pump stations are fully constrained, alternate pumping regimes may offer the small increase in capacity. Alternatively, detention storage may be considered either at the development or downstream pump station to limit peak instantaneous flows if required.

Consideration of these options, if required can be further developed given more accurate information from Council on downstream sewer capacity however at this stage the determination of the most appropriate strategy, if required, is not known. Indicative costs for implementation of pumping strategy and minor upgrades are in the order of \$100,000 up to \$500,000 for detention storage if applicable.

5 RISING MAIN ALIGNMENT

Attached as Appendix C is the DRAFT rising main design. This alignment has been developed in consultation with Council and follows detailed survey of the alignment.

6 CONCLUSION

James Creek Development can be serviced by gravity sewer which remains a suitable and effective servicing option. The required infrastructure has been designed and sized in accordance with concept layout and offers a reasonable cost comparison between the developer preferred gravity option and the pressure sewer servicing option proposed by Council.

7 APPENDIX A

Water and Sewer Servicing Plan – Geolink

Preliminary Water and Sewer Servicing Plan

Lot 104 DP 751388, James Creek Road

PO Box 119 Lennox Head NSW 2478 T 02 6687 7666

PO Box 1446 Coffs Harbour NSW 2450 T 02 6651 7666

> PO Box 1267 Armidale NSW 2350 T 02 6772 0454

PO Box 229 Lismore NSW 2480 T 02 6621 6677

info@geolink.net.au

Prepared for: Garrard Building Pty Ltd © GeoLINK, 2022

UPR	Description	Date Issued	Issued By
3204-1014	First issue	6/09/2019	Michelle Erwin
3204-1041	Second issue	1/10/2020	Michelle Erwin
3204-1077	Third issue	15/10/2021	Michelle Erwin
3204-1105	Fourth issue	24/05/2022	Michelle Erwin

Table of Contents

<u>1.</u>	Intro	oduction	1
	<u>1.1</u>	Background	1
	<u>1.2</u>	Site Description	1
	<u>1.3</u>	Proposed Development	1
_			
<u>2.</u>	Wat	er Supply	4
	<u>2.1</u>	Water Supply Demand	4
	<u>2.2</u>	Water Supply Proposal	4
<u>3.</u>	<u>Sew</u>	verage	6
	<u>3.1</u>	Sewage Generation	6
	<u>3.2</u>	Sewerage Rising Main Proposal	6

Illustrations

Illustration 1.1	Locality Plan	2
Illustration 1.2	Site Plan	3

Figures

Figure 2.1	Proposed water main alignment extent	5
Figure 3.1	Proposed sewer rising main alignment extent	7

1. Introduction

1.1 Background

GeoLINK has been engaged by MPD Investments to prepare a preliminary water and sewer servicing plan for a proposed residential subdivision at Lot 104 DP 751388 James Creek Road, James Creek. This report summarises the water supply and sewerage servicing strategy for the proposed development and should be read in conjunction with the Statement of Environmental Effects and the associated design drawings.

1.2 Site Description

Lot 104 DP 751388 (the Site) is rectangular in shape and has an area of approximately 33 ha. It is situated mid-way along James Creek Road in James Creek, bounded by James Creek Road to the east and Austons Lane to the south, with large rural lots to the north and west. The lot to the north is densely vegetated. Approximately 650 m further to the west flows James Creek and approximately 1.3 km to the east flows Palmers Channel. Both waterways flow north, discharging into the Clarence River approximately 1.7 km north of the site.

James Creek is a small, rural locality on the north coast of NSW. The nearest townships are Maclean, Gulmarrad and Yamba, all within 10-15 minutes' drive of the site. Grafton is the nearest larger centre, located 45 minutes' drive southwest.

The Site has been historically cleared and modified for agriculture, sugar cane production and cattle grazing. It is currently essentially clear of vegetation other than grass. The crest of a small hill is located slightly to the north-west of the centre of the site. From this crest, the land falls away in all directions with slopes on the site typically in the range of 3% to 10%.

The Site is predominantly zoned R1 General Residential, with a portion zoned R3 Medium Density Residential. There is also a small area approximately 2,100 m² zoned B1 Neighbourhood Centre. This area has the potential to include a neighbourhood shop or similar commercial development.

Refer to Illustration 1.1 Locality Plan.

1.3 Proposed Development

The proposal is for subdivision of the site resulting in approximately 330 residential lots and associated infrastructure (e.g. roads, services). At the time of writing, the subdivision is proposed to occur in five stages, however it is noted that the number of stages, the number of lots in each stage and the sequence of staging will be influenced by the market at the time and possibly by the provision of services.

Refer to Illustration 1.2 Site Plan.

Locality Plan - Illustration 1.1

Information shown is for illustrative purposes only Drawn by: AB Checked by: RE Reviewed by: MVE Source of base data: Open Street Map Date: 06/10/2020 Revision: A

0 150 Metres

Geo

Site Plan - Illustration 1.2

Information shown is for illustrative purposes only Drawn by: AB Checked by: RE Reviewed by: MVE Source of base data: ESRI World Imagery Date: 23/05/2022 Revision: B

2. Water Supply

2.1 Water Supply Demand

The Site is proposed to consist of approximately 330 residential lots over an area of 33 ha. There is no suitable water supply available within close proximity to the Site, so a water supply main is required to be constructed from Yamba Road, James Creek to the Site.

The below information pertains to the proposed water supply main. In accordance with the Northern Rivers Development Design Manual, Section D11, the water supply design requirements are as follows:

- Minimum 200 kPa to each lot D11.05.1
- Peak instantaneous demand of 0.15 L/s/tenement D11.05.2
- Desirable maximum pressure of 780 kPa D11.05.4
- Firefighting pressure shall be 118 kPa at 11L/s D11.05.5
- Demand per person is 850 L/day D11.06.1
- Each lot is assumed to have 3.2 equivalent persons D11.06.1

With the above criteria considered, the following minimum requirements will need to be met:

- Peak instantaneous demand of 49.5 L/s
- Daily demand of approximately 900 kL

2.2 Water Supply Proposal

In order to fulfil the criteria in **Section 2.1**, the Site will need to be serviced by approximately 1,500 meters of DN225 PVC main that connects to the new DN250 water main along James Creek Road. The connection point to this new main is approximately 1 km from the intersection with Yamba Road. The trunk water main that will be connected to the new DN250 water main runs along Yamba Road and is serviced by the Maclean 21 ML Reservoir, which is reported to have 55 m head at the connection point. Refer to **Figure 2.1** for the proposed water main alignment extent. This will adequately service the minimum flow and pressure requirements of the Site whilst accounting for system pressure losses.

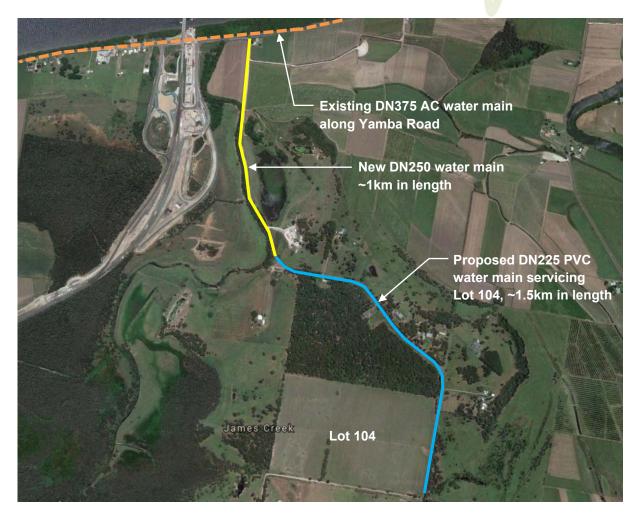


Figure 2.1 Proposed water main alignment extent

3. Sewerage

3.1 Sewage Generation

Sewerage infrastructure for the Site is required to service the same catchment as the water supply. The Site will be serviced by a conventional gravity sewerage system supported by two sewerage pump stations (SPS). The larger SPS will be located close to the James Creek Road frontage and will transfer the sewage via 4.9km of new DN200 PE100 SDR 11 sewer rising main (SRM) to the proposed discharge point along Diamond Street, Townsend.

The below information pertains to the proposed pressure sewer main. In accordance with the Northern Rivers Development Design Manual, Section D12, the sewerage system design requirements are as follows:

- Demand is 240 L/EP/day D12.06.2 and verbal guidance from Clarence Valley
- Each lot is assumed to have 3.2 equivalent persons D12.06.1
- Minimum velocity is 0.6 m/sec (1.0 m/sec is preferred) D12.28
- Maximum velocity 3.0 m/sec D12.28

With the above criteria considered, the design flow rate has been calculated at 20.8L/s in accordance with WSA 02 Part 1. Refer Willow and Sparrow report for further information.

3.2 Sewerage Rising Main Proposal

In order to fulfil the criteria in **Section 3.1**, a DN200 PE100 SDR11 (PN16) main has been determined to be the most suitable for the transfer of all sewage generated from the Site. The 4.9 km rising main has been sized to accommodate 20.8 L/s, which allows for a volume equal to approximately 8 pump starts per hour per pump. The resultant flow velocity and approximate head loss through the main is 1.01 m/s and 49 m respectively. The estimated pump duty at this stage is 20.8 L/s at 49 m. This accounts for both system and static losses. The above design assumptions will need to be confirmed during subsequent SPS design. Refer to **Figure 3.1** for the proposed SRM alignment extent.

Figure 3.1 Proposed sewer rising main alignment extent

Copyright and Usage

©GeoLINK, 2022

This document, including associated illustrations and drawings, was prepared for the exclusive use of MPD Investments to accompany a development application. It is not to be used for any other purpose or by any other person, corporation or organisation without the prior consent of GeoLINK. GeoLINK accepts no responsibility for any loss or damage suffered howsoever arising to any person or corporation who may use or rely on this document for a purpose other than that described above.

This document, including associated illustrations and drawings, may not be reproduced, stored, or transmitted in any form without the prior consent of GeoLINK. This includes extracts of texts or parts of illustrations and drawings.

The information provided on illustrations is for illustrative and communication purposes only. Illustrations are typically a compilation of data supplied by others and created by GeoLINK. Illustrations have been prepared in good faith, but their accuracy and completeness are not guaranteed. There may be errors or omissions in the information presented. In particular, illustrations cannot be relied upon to determine the locations of infrastructure, property boundaries, zone boundaries, etc. To locate these items accurately, advice needs to be obtained from a surveyor or other suitably-qualified professional.

The dimensions, number, size and shape of lots shown on drawings are subject to detailed engineering design, final survey and Council conditions of consent.

8 APPENDIX B

RGS32811.1 - AB

29 July 2021

MPD Investments 19 Yamanie Court NERANG QLD 4211

Attention: Mike Willoughby

Dear Mike

RE: Proposed Residential Subdivision – Lot 104 DP 751388, James Creek Road James Creek

Preliminary Geotechnical Assessment

1 INTRODUCTION

Regional Geotechnical Solutions Pty Ltd have undertaken a preliminary geotechnical assessment of Lot 104 DP751388, James Creek Road James Creek.

It is proposed to subdivide the existing lot into 342 residential lots. The site encompasses approximately 33.5ha. The development will include internal roads off James Creek Road and the allocation of building envelops for future residential construction. The development is in the preliminary planning stages at this point. At this stage bulk earthworks with cuttings up to 5m are anticipated.

The purpose of the assessment was to provide comments and recommendations on the following:

- Subsurface conditions including Soil origins, soil types, thickness of topsoil, presence of fill, and groundwater conditions;
- Excavatability of subsurface profile; and
- Suitability of material as reuse for fill.

2 METHODOLOGY

Fieldwork for the assessment was undertaken by an engineering geologist from RGS on 12 July 2021 and included the following:

- Observation of site features and surrounding features relevant to the geotechnical conditions of the site;
- The drilling of five (5) boreholes to depths of up to 5m with a ute mounted drill rig; and

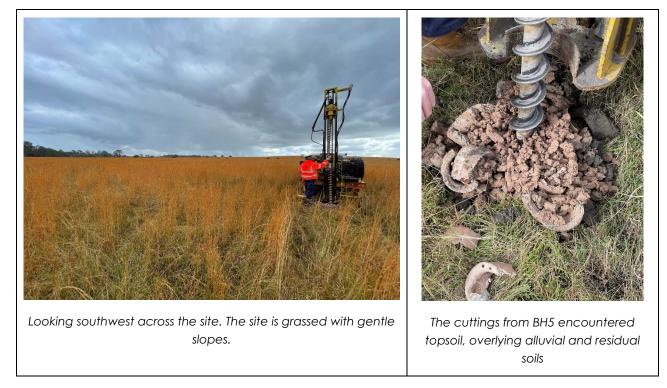
Regional Geotechnical Solutions Pty Ltd ABN 51141848820 Unit 14, 25-27 Hurley Drive Coffs Harbour NSW 2450 Ph. (02) 6650 0010

• Dynamic Cone Penetrometer (DCP) testing adjacent to each of the boreholes to refusal encountered at depths ranging from 1.2m to 1.7m.

Engineering logs of the boreholes are attached. Test locations are shown on the attached Figure 1 and were obtained by taped measurements to prominent site features.

3 SITE CONDITIONS

3.1 Surface Conditions


The site is located on a hill within undulating residual topography. Site slopes are gentle and range from about 2-8°. Site boundaries are delineated by James Creek Road to the east, Austons Lane to the south and dense vegetation to the west and north. Vegetation across the site comprises of grass. James Creek is located approximately 500m to the west.

An aerial photograph that shows the location of the site and the site setting is reproduced below.

Aerial photograph obtained from Google Earth that illustrates the site location and setting. The site boundaries are shown by a red box.

Site photographs are presented below.

3.2 Subsurface Conditions

The 1:100,000 Grafton Area Coastal Quaternary Geology map indicates that there is a small quaternary valley fill deposit at the eastern boundary of the site. The 1:250,000 Maclean Geology Map indicates that the site is underlain by the Marbury Formation comprising sandstone and siltstone with some coal.

The materials encountered within the boreholes undertaken during the investigation are summarised in Table 1. Further details are presented on the attached engineering logs.

Material Name	Material Description	Dept	th to Bas	e of Mal	Material Layer (m)		
		BH1 BH2		внз	BH4	BH5	
Topsoil	Silty CLAY, medium plasticity	0.15	0.3	0.2	0.2	0.2	
Alluvial Soil	Silty CLAY, medium plasticity, firm to stiff			1.0		0.5	
Residual Soil	Silty CLAY, and Sandy CLAY, medium to high plasticity, fine to medium grained sand, stiff to hard.	≥ 5.0	2.8	≥ 5.0	1.5	≥ 5.0	
Extremely Weathered Sandstone	SILTSTONE/SANDSTONE, fine to medium grained, hard/friable		≥ 5.0		≥1.8*		

Table 1:	Summary	of Subsurface	Materials
----------	---------	---------------	------------------

Note: ≥ Indicates that base of material layer was not encountered

* Indicates that the test was terminated due to practical refusal of auger drill

-- Indicates that the material was not encountered at the test location

Groundwater not encountered within any of the boreholes drilled. Groundwater levels do fluctuate due to inclement weather, seasonal variations, or due to reasons that may not have been apparent at the time of the site investigation.

4 GEOTECHNICAL CONSTRAINTS AND CONSIDERATION

The site is generally underlain by stiff to hard residual clays overlying weathered siltstone/sandstone. Some alluvial soils were encountered in the southwestern and north-eastern corners of the site. Weathered rock was encountered in BH2 (northwest corner) at a depth of 2.8m and in BH4 (southeast corner) at a depth of 1.5m.

The alluvial soils encountered in BH3 and BH5 were assessed to be of firm to stiff strength. An allowance may need to be made for these areas to be over excavated.

4.1 Excavation Conditions

Based on the concept drawings it is understood that excavations of up to 5m generally over the western half of the site will be required as part of the proposed bulk earthworks. Some localised deeper excavations may be required for the installation of services.

These excavations will encounter stiff to hard residual clays. Extremely weathered siltstone may be encountered around the northwest corner of the site from a depth of about 3m. The weathered rock encountered was very low strength as such excavations of these materials are likely be achievable with medium sized excavators. Ripping tynes may be required where higher strength rock is encountered.

Auger refusal was encountered in the weathered sandstone within BH4 (southeast corner), is it understood that deep excavations may also be required in this area, ripping types or rock hammers may be required in this area.

Groundwater seepage is not anticipated based on the conditions encountered within the boreholes.

Excavation work must be undertaken in accordance with the Safe Work Australia 'Excavation Code of Practice (January 2020)'

4.2 Fill Materials and Offsite Disposal

Materials recommended for use as engineered fill include good quality well graded granular materials free of deleterious materials and having a maximum particle size of 200mm. Locally sourced or site won ripped weathered rock would also be suitable.

Site won residual clay and weathered rock may be reused as controlled fill at the site. However, the use of reactive clay soils will result in higher foundation costs due to the shrink-swell potential and subsequent increase in characteristic free surface movement (ys) values. No testing on soil reactivity has been undertaken at this stage. Shrink swell issues can be managed by using site won clays in the lower layers and using a granular fill in the upper 1.0m to 1.5m.

Where offsite disposal of material, or reuse of material at an alternative site is proposed it should be assessed in accordance with the requirements of the 'Department of Environment and Climate Change NSW Waste Classification Guidelines Part 1 Classifying Waste' (July 2009) and / or the EPA Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014. As a preliminary guide the alluvial/residual and weathered rock profile is likely to be classified as Virgin Excavated Natural Material. Some testing would have to be undertaken once materials have been stockpiled to assess this. It is recommended that following topsoil stripping that a Geotechnical Engineer be engaged to confirm that the material across the site has not previously been disturbed.

5 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Geotechnical site investigation is based on data collection, judgment, experience, and opinion. By its nature, it is less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted geotechnical design practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

The recommended depth and properties of any soil, rock, groundwater, or other material referred to in this report is an engineering estimate based on the information available at the time of its writing. The estimate is influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

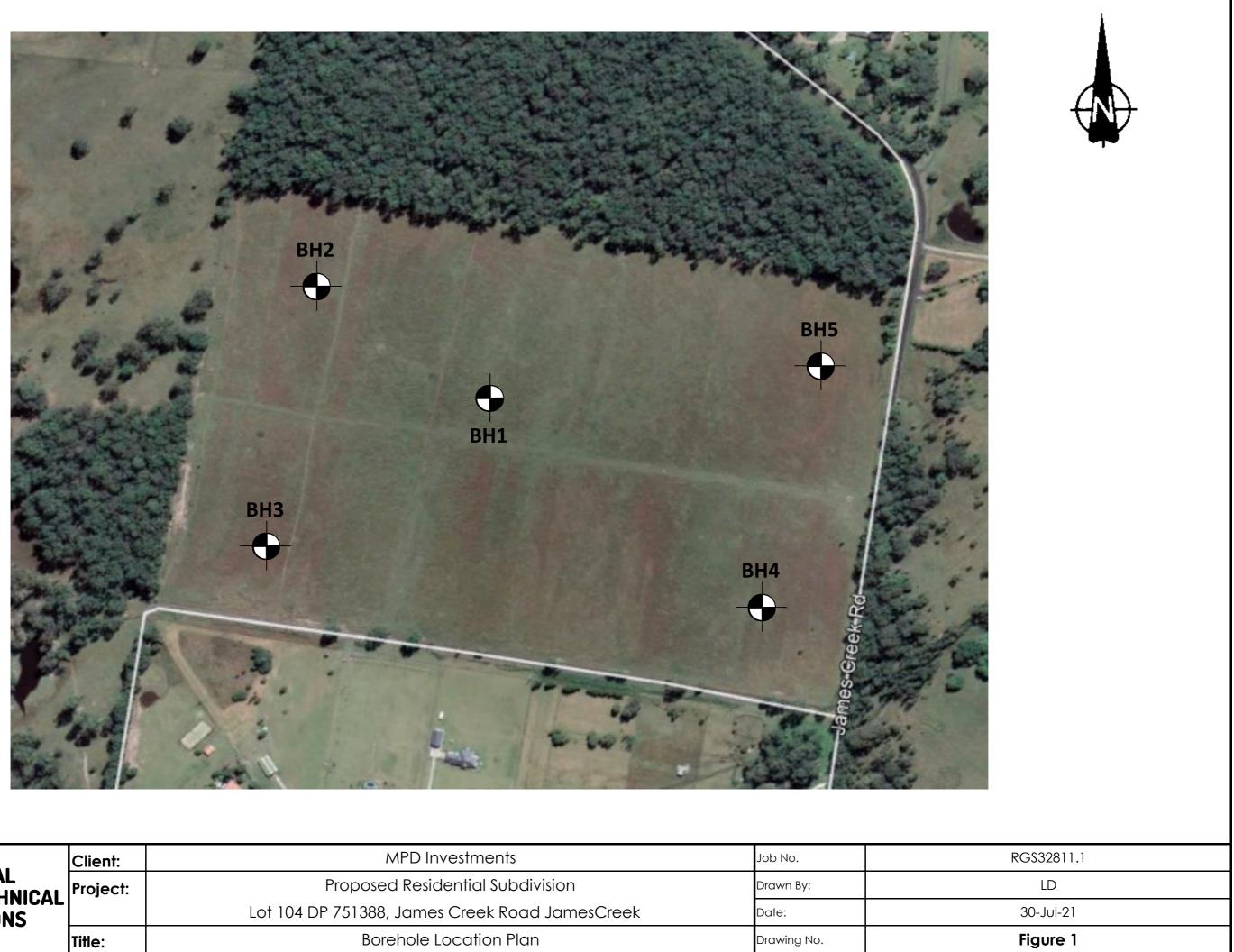
If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by


Reviewed by

Louis Davison Geotechnical Engineer

Maracen

Adam Holzhauser Associate Geotechnical Engineer

Attachments: Figure 1 Borehole Logs

	Client:	MPD Investments	Job No.	
IONAL	Project:	Proposed Residential Subdivision	Drawn By:	
UTIONS		Lot 104 DP 751388, James Creek Road JamesCreek	Date:	
	Title:	Borehole Location Plan	Drawing No.	

	2	REGION		~			RING LOG - BOREHOLE Mike Willoughby				BORE		E NO: BH1	
			CHNIC	AL	ROJE		0,				OBI		RGS32811.1	
		001011			ITE LO		•	ek Road, J	lames C					
				_			ION: Refer to Site Plan	, -	-		DATE		12/7/21	
				orill Rig							SURFACE RL: DATUM: AHD			
		ing and Sam					Material description and profile information		_		-	d Test		
						z				~				
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plas characteristics,colour,minor compo		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations	
AD/T	ered					CL	TOPSOIL: Silty CLAY, medium plasticit	y, dark	M		(m-0)	4 3		
∢	Not Encountered			-		СН	Silty CLAY: medium to high plasticity, g		< W _P	VSt	DCP (0	3 3	RESIDUAL	
	Enco			-			brown mottled, trace of fine grained sar	nd.	Σ		ă	4		
	Not			-								3 3	HP=250kPa	
				-								3		
				1.0								12 10		
							Iron stained bands, grey					19	HP=250kPa	
				-	VXII.					H / Fb		20		
		1.50m					1.50m							
				-		СН	Sandy CLAY: medium plasticity, grey/v ironstaining bands, sand is fine to medi	white, um grained	<pre></pre>					
		DS		-			ווויד נט וווידעו איז	an yancu.	×					
		2.00m		2.0										
				_			Orange/red							
				-										
							2.50m							
						СН	Silty CLAY: medium plasticity, grey and some fine grained sand.	d trace of	× ×	VSt / H				
				-			some nine grannen sann.		Σ	11				
				3.0										
							Hard siltstone layer @3.1m, dark browr	vervlow						
				-			strength.	i, very low						
				-			3.50m		_					
				-	ИИ	ML	Clayey SILT: low plasticity, brown, retu powdery silty gravel.	rned as		H / Fb				
				-	ИИ		powdery sitty gravel.							
				4.0	nn.	1								
					44]								
				-	ИИ								HP=200kPa	
				-	ЦЦ	<u> </u>	<u>4.50m</u>		_					
				-	¥/X//	CL	Silty CLAY: medium plasticity, grey wit ironstainined bands.	h	× K	VSt / H				
				-	¥//X//				ž					
				5.0	¥/X//	1	5.00m							
				_			Hole Terminated at 5.00 m							
				-	1									
				-	1									
				-	-									
F	END:			Notes, Sa	mplacia		te	Consis	tency			CS (kPa	a) Moisture Condition	
LEG Wat			!		-		_	Consis VS	Very Soft		<'	25	D Dry	
	Wat	er Level		U₅₀ CBR			ter tube sample or CBR testing	S F	Soft Firm			5 - 50) - 100	M Moist W Wet	
-	•	e and time sh er Inflow	iown)	Е	Enviro	onmenta	al sample	St	Stiff		10	00 - 200	W _p Plastic Limit	
		er Inflow er Outflow	1	ASS B		Sulfate S Sample	Soil Sample	VSt H	Very Stiff Hard)0 - 400 400	W _L Liquid Limit	
Stra	ta Cha	anges						Fb	Friable				Density Index <15%	
		radational or ansitional strat		Field Test PID	_	ionisatio	on detector reading (ppm)	Density	L V		'ery Lo oose	JOSE	Density Index <15% Density Index 15 - 35%	
	_ D	efinitive or dis		DCP(x-y) HP	Dynar	nic pen	etrometer test (test depth interval shown) ometer test (UCS kPa)		MC D		lediun Iense	n Dense	•	
	st	rata change		116	DIANU	- eneuro			D VD		ense ery D	ense	Density Index 65 - 85% Density Index 85 - 100%	

					E	ENGI	NEE	RIN	IG LOG - BO	REHOLE			В	ORE	EHOLI	E NO: BH2
			REGIO			CLIENT: Mike Willoughby							Р	AGE	= :	1 of 1
	2		SOLUT			PROJECT NAME: Proposed Subdivision						J	OB I	NO:	RGS32811.1	
					S	SITE LOCATION: Lot 104 DP 7511388 James Creek Road, James				mes C	creekL	OGO	GED E	BY: DR		
					т	EST L	OCAT	ION:	Refer to Site Pl	an		DATE: 12/7/21				
0	DRI	LL T	YPE:	RGS [Drill Rig					EASTING:		:	SURF	ACE	RL:	
E	BOREHOLE DIAMETER: 100 mm					nm	n INCLINATION: 90° NORTHING:			I	DATU	M:		AHD		
		Drilli	ing and Sar	mpling		<u> </u>		-	Material description	and profile information				Fiel	d Test	-
METHOD		WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	M		TION: Soil type, plastici colour,minor componer		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		Encountered			-		СН	0.30m	brown, some organ	AY, medium plasticity, o ics.	dark	М		P (0-m)	2 2 3	TOPSOIL
		ot Encou			-		СН			m to high plasticity, dar	 k	M < Wp	St	DCP	2 2 4	RESIDUAL HP=200kPa
		Not			1.0			1.00m	Grey with red irons	taining			VSt	-	4 5 4 6	HP=300-350kPa
							ML	1.00m	Sandy SILT: low p medium grained, tr	lasticity, grey, sand is fi ace of gravel.		D	H / Fb	-	6 7 10 16 20	
ab and In Situ Tool			<u>3.00m</u> DS	-	- - - 3. <u>0</u>		, .	2.80m	Grey silty clay band	l plasticity, dark brown, i	 trace of	d M > M D	H / Fb			EXTREMELY WEATHERED SILTSTONE
장G LIB 1,05.0 GLB Log RG NON-CORED BOREHOLE - TEST PIT RGS32811.1 LOGS.GPJ < <drawingfile>> 21/07/2021 10:17 10.02.00.04 Datgei Lab and in Stu Tool I in internet internet internet internet. Tool I internet internet internet. Internet internet internet. Internet internet internet internet. Tool I internet internet internet. Internet internet internet internet. Internet internet internet. Internet internet. Internet internet. Internet internet. Intern</drawingfile>			<u>3.20m</u>		4.0 <u></u> - - - - - - - - - - - - - - - - - - -			5.00m	Some carbonaciou	s siltstone gravels throu	ughout					
1LOGS					5.0)	5.00m	Hole Terminated at	5.00 m						
HOLE - TEST PIT RGS32811.1						-										
A BORE		END:	_		Notes, Sa	imples a	ind Tes	its			Consister	ency /ery Soft	t -		CS (kPa 25	a) Moisture Condition D Dry
-og RG NON-CORED	Water U ₅₀ ▼ Water Level CBR (Date and time shown) E ► Water Inflow ASS ¬ Water Outflow B			CBR E ASS	50mm Diameter tube sample S Soft Bulk sample for CBR testing F Firm Environmental sample St Stiff Acid Sulfate Soil Sample VSt Very			Soft Firm Stiff /ery Stiff Hard		25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet D W _p Plastic Limit				
I 1 1000	Strata Changes Field Tests Gradational or transitional strata PID Photoionisation detect Definitive or distict strata change DCP(x-y) Dynamic penetrometr				eter test (test depth inte	erval shown)	Fb F Density	Friable V L ME D VD	La D M D	ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index <15 · 35% e Density Index 35 · 65% Density Index 65 · 85% Density Index 85 · 100%				

	ENGINEERING LOG - BOREHOLE								EHOLE		BOREHOLE NO: BH3					H3	
		-		NAL			Г:		Mike Willoughby			PAGE:				1 c	of 1
			SOLUT			PROJE		AME:	Proposed Subdivi	sion	JOB NO: RGS3281					S32811.1	
					5	SITE L	OCAT	ION:	Lot 104 DP 75113	ot 104 DP 7511388 James Creek Road, James CreekLOGGED B				Y: DR	1		
					٦	EST L	OCAT	FION:	Refer to Site Plan				D	ATE		12/	7/21
	DRI	LL T	YPE:	RGS	Drill Rig					EASTING:		:	SURF	ACE	RL:		
1	BOI	REH	OLE DIAN	IETER	R: 100	mm	IN		ATION: 90°	NORTHING:		I	DATU	M:		AHD	
		Drill	ing and Sar	npling					Material description and	I profile information				Fiel	d Test		
							NOI						ς	0			
	MEIHOU	WATER	SAMPLES	RL	DEPTH	비풀의	11CAT	м	ATERIAL DESCRIPTIC	N: Soil type, plasticity	/particle	TURE	STEN	Type	Result		and additional rvations
	ME	MA	O, WI LLO	(m)	(m)	GRAPHIC LOG	CLASSIFICATION SYMBOL		characteristics,col	our,minor component	S	MOISTURE	CONSISTENCY DENSITY	Test Type	Re		
L							_						ŭ			70000	
	AD/T	ered					CL	0.20m	TOPSOIL: Silty CLAY brown, some organics		ark	M		(m-0)	22		
		Not Encountered					CL		Silty CLAY: medium p	blasticity, brown/grey	mottled.	×	St	DCP	22	ALLUVIAL/SL	OPEWASH
		t Enc										Σ			2 2	HP=120kPa	
		Ň													2		
					1.0										2		
					1.0	W	СН	1.00m	Silty CLAY: medium t	o high plasticity, grey,	, red	× ×	St	1	2	RESIDUAL	
						-111			mottled.			v N			5		
						-VXI									6 12		
						-111									18 20	HP=150kPa	
						-VX			a								
					2.0				Some weathered sand	ly ironstone bands							
												VSt			HP=250kPa		
									Some ironstone grave	le							
3									Some nonsione grave	15							
-																	
5					3.0												
						-11											
						-VX											
						-11											
						¥M.											
					4.0												
									Dark red			× ×	VSt			RESIDUAL	
									Builtiou			Σ					
b						Ŵ											
									Becoming silty								
						-11											
-					5.0		4	5.00m	Hole Terminated at 5.0	00 m							
						-											
						-											
						_											
	LEG	END:			Notes, Sa	amples	and Tes	sts			Consiste	ncy /ery Soft		_	CS (kP a 25	A) Moisture C	
i 7		_	er Level						e sample P tosting		s s	Soft		25	5 - 50	M Mo	vist
	_	(Date and time shown) E Environmental samp				ple		St S	Firm Stiff		1() - 100)0 - 200		istic Limit			
	→ Water Inflow ASS Acid Sulfate Soil Samp → Water Outflow B Bulk Sample				mple			/ery Stiff Iard	:		00 - 400 400	W _L Liq	uid Limit				
Strata Changes								riable V		ery Lo		Density Inde	ex <15%				
PID Photoionisation detector reading (ppm)					•			L	L	oose		Density Inde	ex 15 - 35%				
Definitive or distict Strata change Definitive or distict HP Hand Penetrometer test (UCS kPa)					ai snown)		ME D	D	ense	n Dense	Density Inde	ex 35 - 65% ex 65 - 85%					
1			-								1	VD) V	erv D	ense	Density Inde	ex 85 - 100%

		10				ENGI	NEE	RING LOG - BOF	REHOLE			В	ORE	EHOLI	E NO:	BH4
			REGIO			CLIENT	:	Mike Willoughby	1			Р	AGE	:		1 of 1
			SOLUT			PROJE		ME: Proposed Subdiv	vision			J	ОΒΙ	NO:		RGS32811.1
					;	SITE LO	OCATI	ON: Lot 104 DP 7511	1388 James Creek	Road, Ja	ames C	creek L	OGC	GED B	BY:	DR
						TEST L	OCAT	ION: Refer to Site Pla	n			D	ATE	:		12/7/21
			YPE: OLE DIAN		Drill Rig R: 100		IN	CLINATION: 90°	EASTING: NORTHING:			SURF		RL:	AH	D
F		Drill	ing and Sar	npling				Material description ar	nd profile information				Fiel	d Test		
			-				Z		-			۲			-	
	METHOD	WATER	SAMPLES	RL (m)	DEPTI (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTI characteristics,co	ION: Soil type, plasticity blour,minor component		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Strue	cture and additional observations
	AD/T	red					CL	TOPSOIL: Silty CLA 0.20m brown, organics.	Y, medium plasticity, da	ark	М				TOPSC	DIL
	∢	Encountered					CL	Silty CLAY: medium	plasticity, dark brown/l	 brown.	× ≤	St	HP	120	RESIDU	 JAL
		Not Enco					CL	Silty CLAY: medium mottled, trace of iron	i plasticity, pale brown/y stone gravel.	/ellow	~ ₩ > W	St	HP	150		
							CL	0.80m				VSt /	-			
					1. <u>(</u>		CL		in pasicity, brown/ora	nge/rea.	M < w _P	Fb				
							<u></u>		mely weathered, fine to inge grey, very low stre		M	н			EXTRE SANDS	MELY WEATHERED
					2.0)			remely weathered sand	Istone						
RG LIB 1.05.0.GLB Log RG NON-CORED BOREHOLE - TEST PIT RCS32811.1 LOGS.GPJ < <drawingfile>> 21/07/2021 10:17 10.02.00.04 Datgel Lab and In Stu Tool</drawingfile>					3.(4.(5.(- - - - - - - -										
BOREH		END:			Notes, S	amples a	and Tes	ts		Consiste				 <u>CS (kPa</u> 25		ture Condition
Log RG NON-CORED E	- -	Wat (Dat Wat Wat	er Level e and time s er Inflow er Outflow anges	hown)	U₅₀ CBR E ASS B	Bulk Envir Acid	sample i onmenta	ter tube sample for CBR testing al sample Soil Sample		S F St VSt H	Very Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	-	Dry Moist Wet Plastic Limit Liquid Limit
RG LIB 1.05.0.GLB	Strata Changes Field Tests Gradational or transitional strata PID Photoionisation detector reading (ppm) Definitive or distict strata change Definitive or distict DP						val shown)	<u>Density</u>	Density V Very Loose Density Index <15% L Loose Density Index 15 - 38 MD Medium Dense Density Index 35 - 68 D Dense Density Index 65 - 8				ity Index 15 - 35% ity Index 35 - 65%			

					E	ENGI	NEE	RING	G LOG - BOR	EHOLE			В	ORE	HOLE	E NO: BH5
		4	REGIOI			LIENT	:		Mike Willoughby				Р	AGE	:	1 of 1
			SOLUT			ROJE	CT N/	AME:	Proposed Subdiv	vision			J	ОВИ	NO:	RGS32811.1
					s	SITE LO	CAT	ION:	Lot 104 DP 7511	388 James Creek	Road, Ja	imes C	reekL	OGG	SED B	Y: DR
					т	EST L	OCAT	ION:	Refer to Site Plar	n			D	ATE	:	12/7/21
┢	ואח	т	YPE:	RGST	Drill Rig					EASTING:			SURF		RI ·	
			OLE DIAM		•	nm	IN		ATION: 90°	NORTHING:			DATU		I.L.	AHD
		Drilli	ing and San	npling		Τ		N	Material description an	d profile information				Field	d Test	
F						<u> </u>	ZO	1					×			
	₽	ËR		RL	DEPTH	GRAPHIC LOG	CLASSIFICATION SYMBOL	МА	ATERIAL DESCRIPTION	ON: Soil type, plasticity	/particle	MOISTURE	CONSISTENCY DENSITY	Spe	븤	Structure and additional observations
	METHOD	WATER	SAMPLES	(m)	(m)	LO	SSIFI		characteristics,co	lour,minor components	S	10IST ONDI	NSIS'	Test Type	Result	
	2						CLA					20	8			
	AD/T	red					CL		TOPSOIL: Silty CLAY brown, some organics	۲, medium plasticity, da	ark	М		(m-0)	1	TOPSOIL
	∢	Not Encountered			-		CL			plasticity, grey, brown.		Å.	St	DCP (0	2 2	
		Enco	0.50m		-			0.50m				ž		ă	3	
		Not	DS 0.70m		-		CL		Silty CLAY: medium brown/pale grey mottl	to high plasticity, pale ling.		Å ∼	St / VSt		4	RESIDUAL HP=150-200kPa
			0.70m		-	¥M.				0		Σ			6 10	
					1. <u>0</u>	¥M)									12 16	
															20	
					-											HP=200-350kPa
					-				Pale grey with ironsto	one banding			VSt / H			HP=200-350KPa
			2.0						Dolo grov							
									Pale grey							
2					-											
					-	¥/X//										
					3. <u>0</u>	¥M.										HP=400kPa
					-	¥M.										
Cardo																
5.0																HP=400-450kPa
					-											
					-											
					4. <u>0</u>							4	H / Fb			
					-	¥/X//						v v				
												Σ				
- Billio																HP=450kPa
					-											
5				5.00m												
	_				5.0	<u> </u>	1		Hole Terminated at 5.	.00 m						
					-	-										
1000					-	-										
						_										
2		GEND: <u>Notes, Samples and Tests</u>							Consiste			<u>U(</u> <2	CS (kPa			
i 1	Wate	Water Level U ₅₀ 50mm Diameter tube sample							s s	/ery Soft Soft		25	5 - 50	M Moist		
	Water Level (Date and time shown) E Environmental sample					•			Firm Stiff) - 100)0 - 200	W Wet W _p Plastic Limit			
	Water Inflow ASS Acid Sulfate Soil Sample							VSt \	/ery Stiff		20	00 - 400	P			
ß		Water Outflow B Bulk Sample Strata Changes							−ard Friable		>4	100				
	<u></u>	Gr	radational or		Field Test	_	ionicoti	ion deter	ctor reading (nom)		Density	V		ery Lo bose	ose	Density Index <15%
Definitive or distict DCP(x-y) Dynamic penetrometer test (test depth interval shown) MD Mo					edium	n Dense	,									
	Definitive or distict DOP(X-Y) Dynamic penetrometer test (test depininetival shown) strata change HP Hand Penetrometer test (UCS kPa)								D VD		ense erv De	ense	Density Index 65 - 85% Density Index 85 - 100%			

9 APPENDIX C

JAMES CREEK ROAD SUBDIVISIONAL DEVELOPMENT (328 Lots Residential Lots), on Lot 104 DP 751388

GRAVITY SEWER VS LOW PRESSURE SEWER SUBMISSION.

1. Submission of a Gravity Sewerage System Alternative to the Clarence Valley Council's Nominated Pressure Sewer System:-

This submission is provided to demonstrate that a Low-Pressure Sewer System is in our view is not the correct system to be installed for sewer reticulation on the Proposed James Creek Road subdivision and that a gravity system should be the preferred infrastructure. We acknowledge that this is contrary to Council's Policy determination for the proposed residential development on Lot 4 DP 751388 in that James Creek has been nominated by Council as a location where a pressure sewer system will provide centralised reticulation [Section 4.2 of Council Policy].

In addition to the policy nominating specific catchments, it also notes that pressure systems are supported where it can be demonstrated that it has a significantly lower overall life cycle cost option for Council than gravity sewerage.

We outline below the difference between the two options and put forward that the benefits of a gravity system prevail to the extent that Council should revisit its policy settings.

This policy for the pressure system is contested based on Council's Policy Statement (Section 1.0) which states that 'Council will permit the installation of pressure sewer systems to provide sewerage services where other forms of sewerage cannot be effectively or economically used or where pressure systems have a particular environmental, economic, or social benefit."

Refer to the Clarence Valley Council Pressure Sewer Policy (Ref No. 1767965 V 6.0) - extracts of which are included in Attachment 1.

Council's determination for the James Creek Area to be reticulated by a pressure sewer system is contested on economic, environmental, or social benefit as set out below.

2. Background: -

There are numerous sewer systems used for the delivery of sewer reticulation for subdivisional developments, generally categorised as either, conventional gravity or various pressure systems (positive and negative (vacuum)).

The two (2) systems under consideration for the James Creek Road subdivision are: -

- Gravity System these systems comprise house connection (HC) points for the collection of sewerage waste from households, delivering the sewerage via a network of pits and pipes to Sewerage Pump Stations.
- Pressure Systems these systems comprise household reticulation, tanks and grinder pumps which deliver the sewerage via a network of pipes (pressurised) and controls by the collective of household pumps to Sewerage Pump Stations.

Gravity systems are generally constructed in undulating terrain where gravity is the main delivery force, whilst pressurised systems are used where the terrain is either flat or there are shallow/hard ground conditions which render the gravity system uneconomical.

For this comparison of systems, it should be noted that a major pump station a is only required for the gravity systems in the SE corner of the site and an additional pump station (minor) is required due to terrain level differential constraints in the SW corner servicing the western. This is two (2) pump stations for the gravity system. This compares with 328 pressure pumps (327 residential lots and 1 commercial lot). This assumes that the 12 duplex lots and the 12 townhouse dwellings the R3 zoning have single micro pressure pump units. This is a significant difference in infrastructure (and componentry) requirements.

System layouts for each alternative are included in Attachment 2. Note that the Pressure System layout [which has a different lot arrangement] is included although it was for an earlier application (which was withdrawn). It does, however, provide a layout for comparison of systems.

3. Economic Viability: -

3.1 System Costs - both the Capital Cost and Operational and Maintenance Costs of the respective Systems are detailed below (and further detailed in Attachment 3).

Capital Cost Comparison:

•	Gravity Sewer Pressure System	= \$ 2,977,500 [\$ 9,078 / lot] = <u>\$ 4,764,600 [\$ 14,526 / lot]</u>
	Cost Differential	= (\$ 1,787,100) [\$ 5,488 / lot]

Note that the purchaser of the lot or home must fund the additional cost of \$5,488 at the time of purchase as the developer will pass on the development costs of the land.

Operational and Maintenance Cost Comparison:

5 Year Planned Maintenance Costs [Council costs]

•	Gravity Sewer	= \$	42,160
•	Pressure System	= <u>\$</u>	183,483
	Cost Differential	= (\$	140,923)

Note these costs are an accumulation over 5 years but are repeated every 5 years indefinitely except for the 20 year unit replacement. Additionally, the power cost to the home owner is assessed at \$50 per annum and the Council operator attendance costs with a 6 monthly inspection or call out is \$300 per annum.

20 Year Life Cycle – Replacement Costs: [Council costs]

•	Gravity Sewer (pumps + controls)	= \$ 55,200 life cycle replacement
•	Pressure System (pumps + controls)	= <u>\$ 1.580.304</u> life cycle replacement
	Cost Differential	= (\$ 1,525,104)

The cost comparisons speak for themselves, showing that a pressure sewer system, if installed, will be operated, maintained, and replaced at the end of the life cycles at a significant additional cost to Council (homeowners) in comparison to a gravity system in this case. And this is in addition to the initial capital cost which is borne by the homeowner.

Council may argument that there is an anticipated increase in design inflows between the two systems due the potential ingress of groundwater into the gravity system. Given the terrain and geology of the site this ingress is expected to be minimal.

Obviously, the ratepayer will be the one who pays. Our concern is that the pressure system is clearly not economically supportable for a large-scale development on land which is topographically and geotechnically suited to a gravity sewer system, particularly when there is a technically sound cost effective alternative available.

Surely this is contrary to the public interest.

As noted earlier there is a total or 328 allotments (327 residential lots and 1 commercial lot), 12 of which are duplex and one lot 116 contains 12 Unit (R3 zoning). The duplex and townhouse sites are anticipated to have single pressure system for comparison.

3.2 Lifestyle Costs -

The lifestyle costs are significantly prejudiced by a householder having to install a private sewerage system in an area that is ideally suited for a conventional gravity sewerage system.

Private responsibility for maintenance awareness (and cost) should never be imposed on the public where other viable (no-risk systems) are available. Additionally with the pressure pump located on each lot there is a heightened risk of damage to the system from a range of factors together with the unnecessary unsightliness of the units.

Not only will the cost of the system be seen as a lifestyle impediment, but there will also be an significant environmental footprint and the changing environmentally awareness of the general public in relation to 'material use excesses'.

For a development location where there is no physical or environmental advantage of a pressure system, and regardless of this fact, an uneconomical sewerage system is being imposed on the development which will have a significant detrimental effect on the lifestyle viability and lifestyle credibility of the development.

4. Environmental Benefit (Sustainability): -

The 'material hungry' pressure system is environmentally unsustainable in terms of the excessive use of materials alone; the gravity sewer alternative presents a clearly significant environmental benefit, which can be realised in terms of a more efficient use of valuable materials.

These issues are obviously reflected via the comparative system economics highlighted earlier.

- 5. General Social Benefit (Risk Aversion) there is a clear social benefit of the Gravity System vs the Pressure System in terms of risk aversion as highlighted below: -
 - ✓ There is no risk of failure and overflow in the management of the gravity pit and pipe, and pump station reticulation system.
 - ✓ Fail-safe pump duplication systems within the gravity pump station system manages risk compared to a multitude (328 No.) of single unit micro sewerage systems.
 - ✓ Larger reticulation lines minimise the risk of blockages.
 - ✓ The risk of a micro system spill onto a neighbour property is averted.
 - ✓ Pressure pipes present a higher failure risk spill risk if the pipework is damaged.

Given the favourable topography and the proven low-maintenance advantages of gravity pipe, pit, and pump station reticulation systems for this type of landform type, the case for the use of pressure system for this development cannot be supported on economic, environment nor social grounds.

Mike Willoughby

MIE Aust CPEng NER APEC Engineer Int PE (Aust) RPEQ October 2021 Clarence Valley Council Pressure Sewerage Policy

1. Policy Statement

Clarence Valley Council will permit the installation of pressure sewerage systems to provide sewerage services where other forms of sewerage cannot be effectively or economically used, or where pressure systems have particular environmental, economic or social benefits. While pressure systems are an internationally recognised sewerage system, they are sufficiently different to gravity reticulation systems to require a separate policy statement.

2. Definitions and Glossary

Accredited Installer – an installer accredited by the Period Supply Contractor for undertaking onproperty works in accordance with Section 11.4 of this policy

Actual Pump Head – This is the actual static head plus the frictional losses that the pump has to meet in discharging the collection tank's contents. The final or actual pump head is determined from field measurement, to confirm previous design calculations of the pump head.

Alarm Volume – This is the volume that is stored in the on-property collection tank, before the collection tank alarm activities.

As constructed drawings – see work as executed drawings

Backlog area - existing residential areas that do not currently have a centralised (or reticulated) sewerage system

Boundary kit - see Property Boundary Assembly

Collection/Pump unit – a collection tank and associated pumping equipment including grinder pump, level switches, pipework and valves

Collection/Pump unit supplier – a company that supplies collection/pump units, technology (primarily Grinder pumps) and knowledge and guarantees the performance of the individual items within the collection/pumping unit

Collection Tank – that part of a collection/pump unit which collects and stores flows from sanitary drains

Control/Alarm Panel – The power and control panel which controls operation of the Grinder pump and which contains audible and visual alarm components. The panel also contains a dedicated circuit breaker for power disconnection.

Council - This term should be interpreted to mean Clarence Valley Council and its successors.

Designer – This is the individual responsible for the design of either the pressure sewerage reticulation system or the on-property works (or both).

D&C – Design and Construction Tender/ Contract.

Eligible to Connect to Sewer – Council's *Sewer and Water Connection* policy defines whether a property is eligible to connect to sewer.

Clarence Valley Council Pressure Sewerage Policy

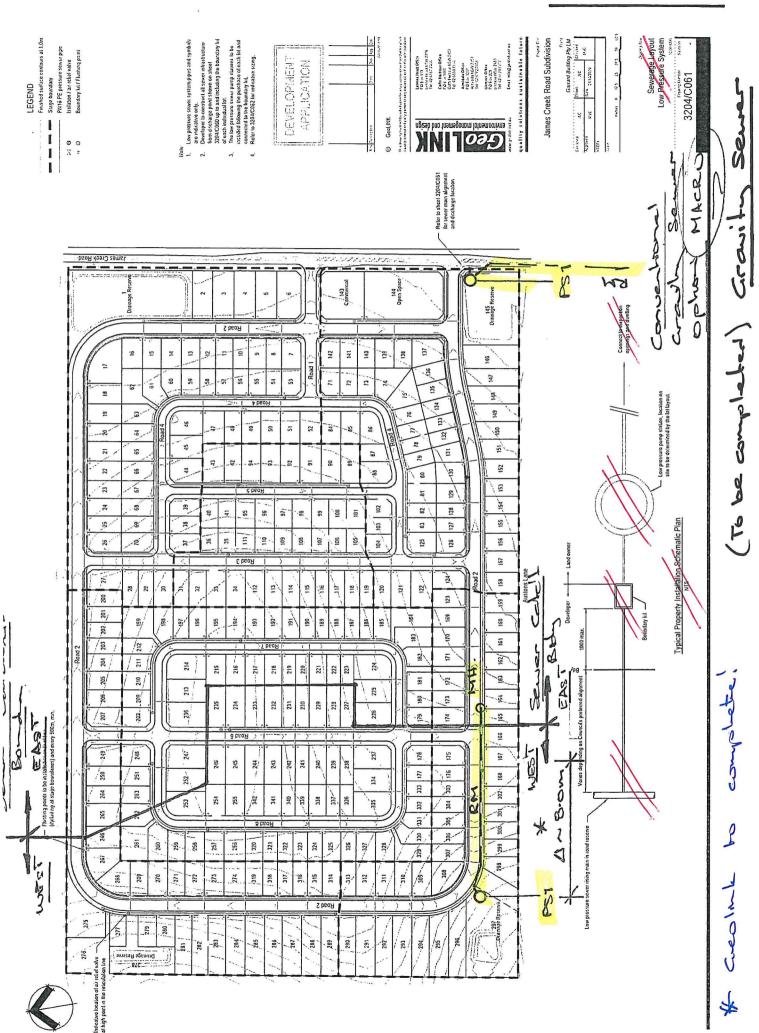
Although pressure sewerage may, in some locations, have a lower construction cost, this will not necessarily mandate its use. Accordingly Developers proposing to use pressure sewerage will need to justify why Council should permit these systems in their particular application.

4.2 Likely General Applications of the Pressure Sewerage Systems

The most common applications for pressure sewerage in the Clarence Valley area are likely to be:

- Areas where Council has resolved that pressure sewerage will provide the centralised reticulation. This currently includes Lawrence, Iluka, and the West Yamba, Gulmarrad and James Creek urban release areas,
- New subdivisions that can be more economically serviced with a pressure sewerage system than gravity sewerage systems,
- For individual homes (or small clusters of homes) that are currently in close proximity to or are part of a sewered urban area but have not been serviced by that area's current sewerage scheme and connection would involve one or more pump stations and/or site conditions are such that construction of a gravity sewerage system would compromise sensitive environmental areas. This also includes existing vacant urban blocks of land under the same circumstances. These properties will be subject to an application for connection to the sewerage system and subsequent investigation that confirms that this connection is possible and viable.

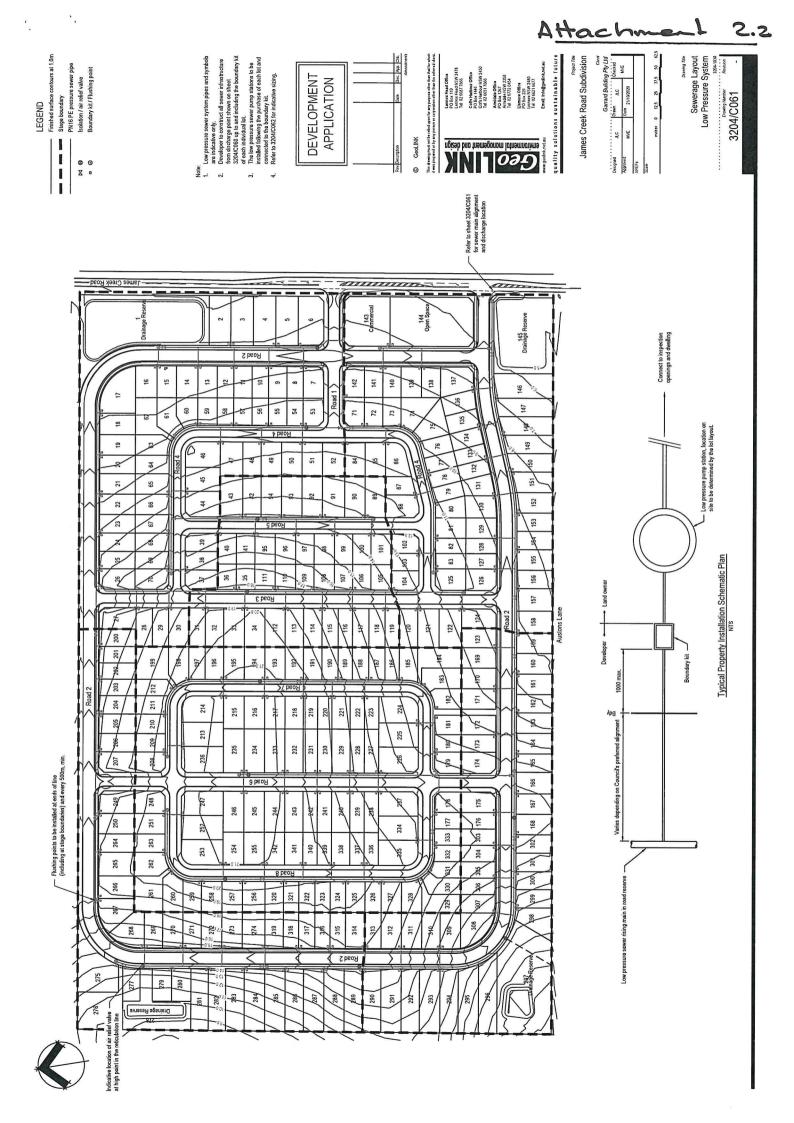
4.3 Ownership of "On-Property" Works


Conditions of connection to Council's pressure sewerage systems under Clause 18(1) of the Local Government (General) Regulation 2005 are that:

- a) Ownership of "On Property" works, which include the following components (as defined in WSAA 05) shall reside with Council:
 - Collection/Pump unit
 - Property discharge line/s from the pump to the property boundary assembly
 - Control/Alarm panel
 - Property boundary assembly
 - Pump control/power cable
 - A one (1) metre stub of sanitary drain extending outside the pressure sewerage collection tank.
- b) Collection/pumping units installed within the system shall be compatible with the collection/pumping units supplied under Council's period supply contract.

Pressure sewerage systems do not have any resident serviceable parts, and under Section 635 of the Local Government Act it is an offence to wilfully or negligently remove, damage, destroy or interfere with a sewer system. Property owners should note that the property discharge line is also defined as part of the system. In particular, property owners/residents should locate the property discharge line before commencing any excavation works which may damage the line. Council may attempt to recover costs for any wilful or negligent damage to pressure sewerage systems:

4.3.1 Requirements for Easements over On Property Works


Easements will generally not be required over any part of the "on property" works, so as to enable property owners to subsequently relocate on property works (normally the property discharge line) as required to accommodate future property modifications etc. However, an easement will be required if the property discharge line is required to pass through a neighbouring property.

۰,

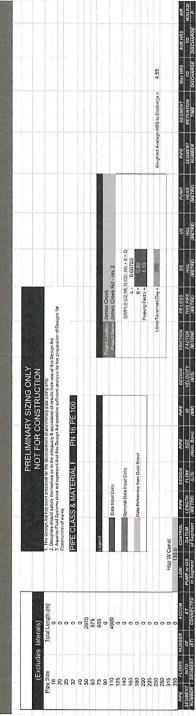
Attachment

2.1.

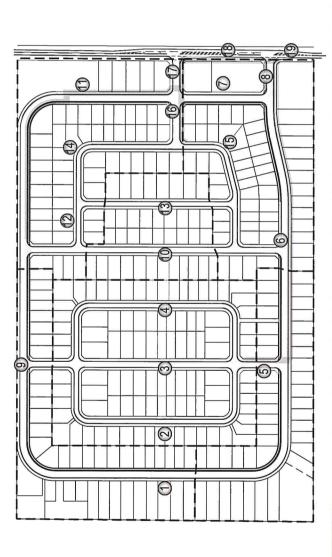
			Cient Garrard Building Pty Ltd	na Bu	iding	£	Cleri
Designed Aquatec Drawn MVE Che	Aquatoc	<u>a</u>	LIVE	- MA	:0	becked	
Approved	INE	6	Dete 21	2110/2020	1	N	
XREFs		1					1
Scale							1
	mates 0 125 25 375 50 625	•	12.5	x	37.5	9	5.09

Preject Title James Creek Road Subdivision

Their dreaming must not be releed upon for any purpose other than that for which it was prepared or by any person or corporation ather than the referred chert.


· .

LEGEND


۰,

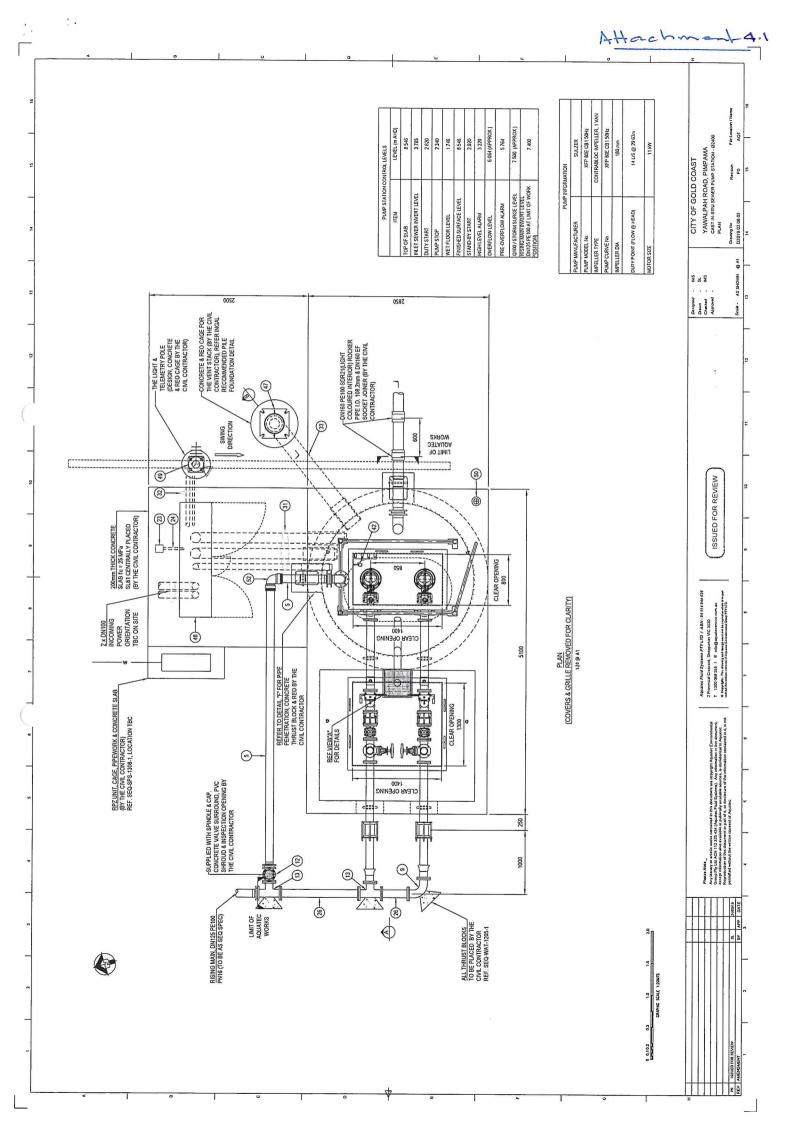
Stage boundary PN16 PE OD50 mm PN16 PE OD50 mm PN16 PE OD55 mm

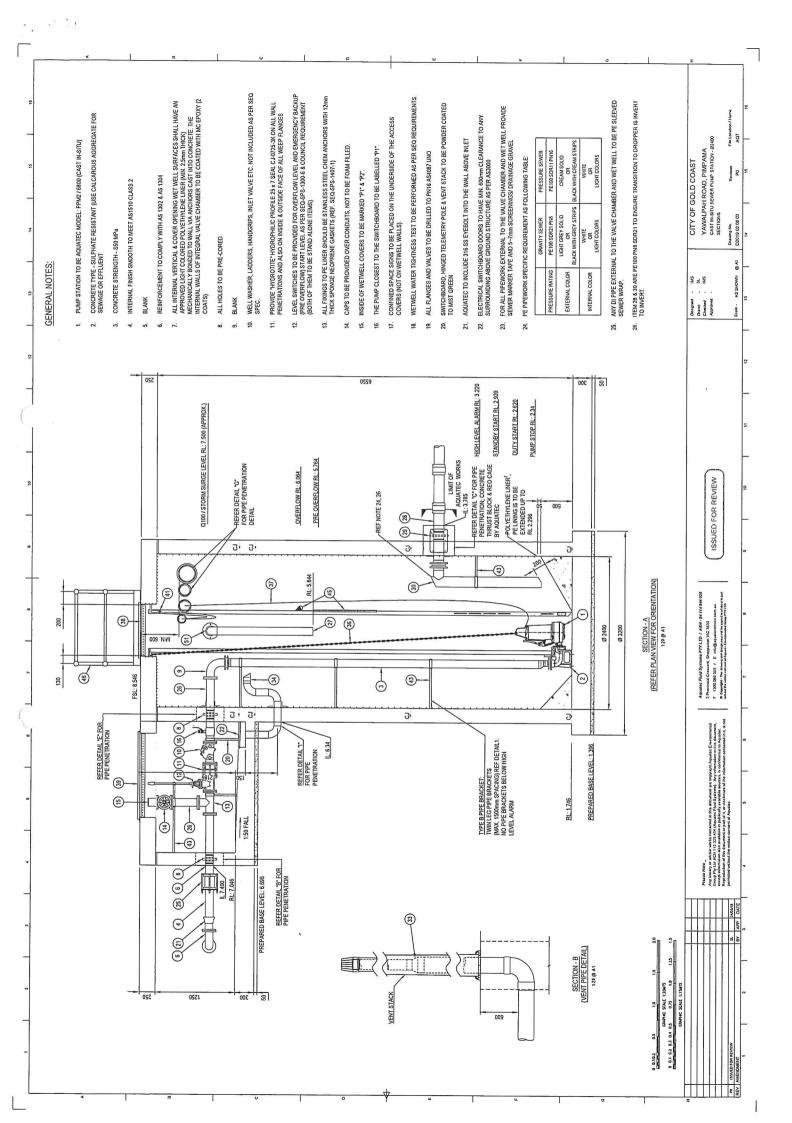
WALKSI	d	ð	7.35	3.79	2.93	381	2.71	3.52	3 09	4.56	ð	2.70	2.48	ð	6.61	ð	2.26	1.68	2.67	ð
70	DISCHARGE	4.51	4.59	4.57	4.58	4.27	4.11	4.43	3.95	5.25	4.98	4.39	4.70	4.76	4.35	4.50	4.17	4.10	4.00	1.97
10	DISCHARGE	4.79	4.88	4.83	4.85	4.31	4.24	4.89	3.97	5.84	5.30	4.66	4.93	5.05	4.47	4.77	4.22	4.12	4.07	3.94
RETENTION	TIME	0.65	0.59	0.62	0.55	0.07	0.27	16.0	0.04	1.18	0.64	0.54	0.46	0.58	0.25	0.55	0.10	0.05	0.14	3.94
SEGMENT	NUMBER		2		4	5	9	7	8	đi	92	11	12	1	14	15	16	11	18	19
HEAD	(METRE)	36.68	22.71	13.59	23.19	14.77	14.66	18.43	18.78	18.86	25.36	17.31	17.69	24.59	19.87	21.60	17.57	18.70	19.28	19.04
HGL	(METRE)	46.68	41.71	34.59	41.19	30.77	29.66	26.43	24.78	35.86	33.36	30.31	33.69	36.59	32.87	30.60	26.57	25.70	25.28	24.04
HGL	(METRE)	29.66	30.77	30.77	30.77	29.66	24.78	24.78	24.04	30.31	30.31	25.70	32.87	32.87	26.57	26.57	25.70	25.28	24.04	5.00
THIS PIPE	(METRE)	17.02	10.95	3.83	10.42	1.11	4.87	1.64	0.75	5.55	8.06	4.61	0.62	3.72	630	4.03	0.63	0.41	1.24	19.04
FACTOR	(MU100MD)	3.09	2.61	2.02	2.61	1.48	1.20	1.64	1.25	1.85	2.30	1.10	1.64	1.96	2.86	2.02	1.10	0.83	0.03	0.39
VELOCITY	(2:17)	0.94	0.86	0.75	0.86	0.74	0.74	0.67	0.75	0.71	0.80	0.63	0.67	0.74	06.0	0.75	0.63	09.0	0.60	0.51
01	(0000)	40.0	40.0	40.0	40.0	51.0	61.0	40.0	61.0	40.0	40.0	51.0	40.0	40.0	40.0	40.0	51.0	61.0	61.0	0.08
SIZE	(Nom. Bore)	50	50	104	1 50	63	75	50	2	50	20	63	50	50	60	05	1 103 10	75	12 T	110
FLOW	(115)	1.19	1.08	0.94	1.08	1.51	2.16	0.64	2.20	0.90	1.01	1 28	0.64	0.93	1 14	0.94	1.28	1.77	1.77	3.17
LENGTH	(METRE)	550.0	420.0	190.0	400.0	75.0	405.0	100.0	60.0	300.0	350.0	420.0	50.0	190.0	220.0	200.0	80.0	50.0	150.0	4900.0
DATUM	of Segment	15.0	15.0	15.0	16.0	15.0	60	6.0	5.0	13.0	13.0	7.0	13.0	13.0	9.0	0.6	0.7	6.0	5.0	5.0
PUMP or UIS	in Segment	10.0	19.0	21.0	18.0	16.0	15.0	8.0	6.0	17.0	13.0	13.0	16.0	12.0	13.0	0.6	9.0	7.0	6.0	5.0
51	CONNECTED	55	40	20	40	101	194	9	200	14	30	69	9	18	48	20	69	138	138	338
or	r (ED)	55	40	20	40	1	38	9	0	14	30	25	9	18	24	20	1	0	0	0
T INTO	SEGMEN	9	5	5	5	9	8	80	19	11	11	17	14	14	16	16	17	13	19	0
SEGMEN	NUMBER	1	2	•	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18	19

CALCULATION TABLE

		JAMES CREEK ROAD RESIDED	NTIAL ES	TATE	, James Ci	IDENTIAL ESTATE, James Creek, NSW.	
							20/10/2021 13:09
LOW P	RESSURE SEWER RETICULATION	LOW PRESSURE SEWER RETICULATION SYSTEM - Annual Operational and Ma	intenance	e Cost	s Estimate	Mechanical a	Maintenance Costs Estimate (Mechanical and Electrical Components)
ltem	Desi	Description	Quantity	Unit	Rate	Amount	Comment
			per Year				
Household	Household Grinder Units						
Annual Ru	Annual Running Costs & Maintenance						
1 Pur	Pumping	Annual Pump Operation Costs	1	No.	\$ 5	50 \$ 50	Householde Electricity Costs.
2 Op(Operator Attendance	Once every 6 months (2 No. per year)?	2	No.	\$ 120	0 \$ 240	1 x Maintenance Technician in attendance.
		Annual Operational Costs				\$ 290	
Planned N	Planned Maintenance Costs for the First 5 year Period						
1 Pur	Pump Maintenance	Replacement of worn parts, maintenance as		ltem	\$ 933	3 \$ 933	Pump Cost \$ 2,980 - add 20% for installation.
		required - est. at 30% of new pump costs.					
2 Val	Valve Maintenance	Replacement of worn parts, maintenance as	•	ltem	\$	4 \$ 414	Controller Cost (& assoc works) \$1,035 - add 20% for install.
		required - est. at 30% of mechanical fit-out.					
						\$ 1,347	1,347 Five Year Total
		Annual Maintenance Costs				\$ 269	
		Annual Combined Costs per Household Unit.				\$ 559	
		Total Costs	No. Lots	ts	\$ 328	8 \$ 183,483	
Planned 2	Planned 20 Year Life Cycle - Replacement Costs						
1 Pur	Pump Units	Replacement of Pump Units		ltem	\$ 3,576	5 \$ 3,576	Pump Cost \$ 2,980 - add 20% for installation.
2 Cor	Controller Units	Replacement of Controller Units	,	ltem	\$ 1,242	2 \$ 1,242	Controller Cost \$ 1,035 - add 20% for installation.
		20 Year Replacement Costs				\$ 4,818	Twenty Year Total
		Total Costs	No. Lots	ts	328	8 \$ 1,580,304	

		JAMES CREEK ROAD RESIDENTIAL ESTATE, James Creek, NSW.	NTIAL ES	STATE,	James Cre	sek, NSW	
8	CONVENTIONAL GRAVITY SEWER RETICULATION SYSTEM - Annual Oper	ULATION SYSTEM - Annual Operation	al and M	ainten	ance Costs	Estimate (N	ational and Maintenance Costs Estimate(Mechanical and Electrical Components).
Item		Description	Ouantity	Unit	Rate	Amount	Comment
			per Year				
Two	Two (2) Conventional Small Sewer Pump Stations						
Ann	Annual Running Costs & Maintenance		1 x Pump				
ы	Pumping	7.5kW 1-2 hours per day operation for 365 days plus	5,475	kW-h	\$ 0.37	\$ 2,000	0(
		15 days of 20 hours per day operation for one					
ſ		pumps = 750kWh.					_
N		1 WICE a MONTH TOF Z - 4 HOURS EACH ATTENDANCE. Annual Operational Costs	144	MHL/YL	00.021 ¢	\$ 19.280	30 2 X Maintenance Lechnicians 24 Visits for 3Hr av./Yr.
Plan	Planned Maintenance Costs for the First 5 year Period						
1	Pump Maintenance	Replacement of worn parts, maintenance as	1	ltem	\$ 6,000.00	\$ 6,000	00 Pump Cost \$ 16,000.
		required - est. at 30% of new pump costs					
2	Valve Maintenance	Replacement of worn parts, maintenance as	1	ltem	\$ 4,000.00	\$ 4,000	00 Mechanical Fit-out \$ 12,000
		required - est. at 30% of mechanical fit-out.					
						\$ 10,000	00 Five Year Total
		Annual Maintenance Costs				\$ 2,000	00
		Annual Combined Costs for the Additional Pump Station	tion	1		\$ 21,280	01
		Two (2) Pump Stations CostAnnual Combined Costs.		2		\$ 42,560	20
Plan	Planned 20 Year Life Cycle - Replacement Costs						
7	Pump Units	Replacement of Pump Units	1	ltem	\$ 3,576.00	\$ 19,200	00 Pump Cost \$ 8,000 each x 2 = \$ 16,000 - add 20% for install.
2	Controller Units	Replacement of Controller Units	1	ltem	\$ 2,400.00	\$ 8,400	00 Level Sensors and Electronics - \$ 7,000 - add 20% for install.
		20 Year Replacement Costs		1		\$ 27,600	00 Twenty Year Total
		Two (2) Pump Stations CostAnnual Combined Costs.		2		\$ 55,200	0
		COST DIFFERENTIALS (in favour of the Conventional Gravity System)	Ir of the Con	ventional (Sravity System)		
Plan	Planned Maintenance Costs for the First 5 year Period				Delta	\$ 140.92	140.923 in favour of Conventional Gravity System Alternative.

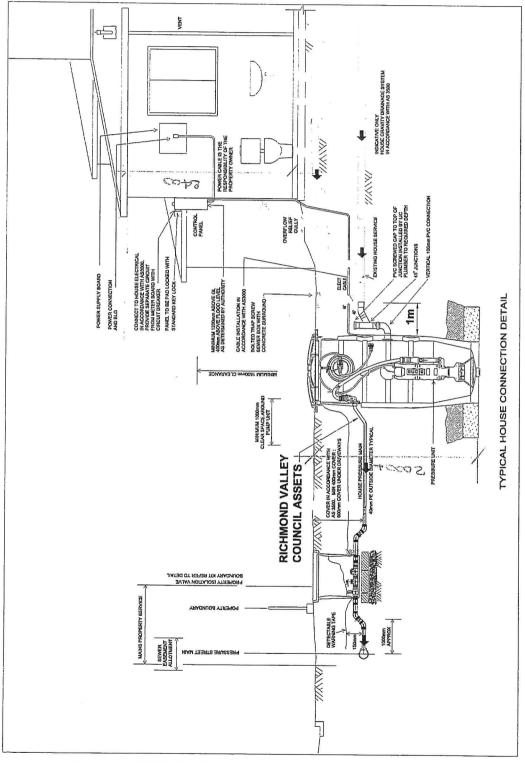

C:\Users\User\User\OneDrive - WM DEVELOPMENTS PTY LTD\Documents\Doug Lomas\James Ck Res A Subdivision, Yamba\Sewer Reticulation System\Gravity Vs Pressure Sewer Submisson\Final Submission 200ct21\James Ck Rd Sewer O&M Cost: Comparison (B) 190ct21.xlsx 20/10/20211:09 PM

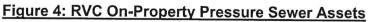

1,525,104 in favour of Conventional Gravity System Alternative.

S

Delta

Planned 20 Year Replacement Costs

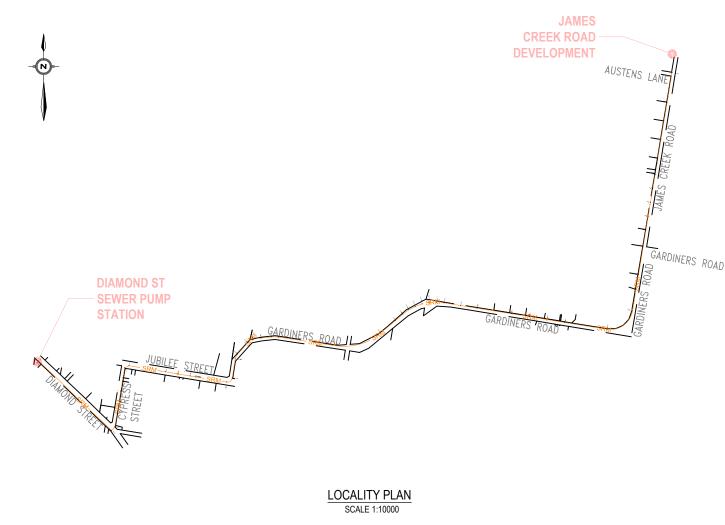



PRESSURE SEWER SOLUTIONS P/L

, ×,* -

*Refer to Property Data Base for confirmation of pressure sewer system type: e.g. Simplex, Duplex or Quadruplex.

RVC pressure sewer policy defines their assets as indicated in Figure 4


10 APPENDIX D

Preliminary Rising Main Design

EXTERNAL SEWER RISING MAIN FR JAMES CRK ROAD DEVELOPMENT DIAMOND STREET SEWER PUMP STA

	DRAWING INDEX
DWG. No.	DESCRIPTION
C000	COVER SHEET & SEWER LOCALITY PLAN
C001	GENERAL NOTES - SHEET 1 OF 2
C002	GENERAL NOTES - SHEET 2 OF 2
C003	SEWER RISING MAIN OVERALL LAYOUT PLAN - SHEET 1 OF 2
C004	SEWER RISING MAIN OVERALL LAYOUT PLAN - SHEET 2 OF 2
C005	SEWER LONGITUDINAL SECTIONS SHEET 1 OF 10
C006	SEWER LONGITUDINAL SECTIONS SHEET 2 OF 10
C007	SEWER LONGITUDINAL SECTIONS SHEET 3 OF 10
C008	SEWER LONGITUDINAL SECTIONS SHEET 4 OF 10
C009	SEWER LONGITUDINAL SECTIONS SHEET 5 OF 10
C010	SEWER LONGITUDINAL SECTIONS SHEET 6 OF 10
C011	SEWER LONGITUDINAL SECTIONS SHEET 7 OF 10
C012	SEWER LONGITUDINAL SECTIONS SHEET 8 OF 10
C013	SEWER LONGITUDINAL SECTIONS SHEET 9 OF 10
C014	SEWER LONGITUDINAL SECTIONS SHEET 10 OF 10
C020	SEWER RISING MAIN DETAILS - SHEET 1 OF 2
C021	SEWER RISING MAIN DETAILS - SHEET 2 OF 2

SEV	VER SPECIFICATIONS & STANDARD DRAWING LIST
DWG. No.	DESCRIPTION
	SPECIFICATIONS
	PRESSURE SEWAGE CODE OF AUSTRALIA (WSA 07-2007-1.1)
	THE CLARENCE VALLEY COUNCIL D12 SEWERAGE SYSTEM SPECIFICATION AND DEVELOPMENT CONSTRUCTION SPECIFICATION (SEWER SUPPLY-C402)
	NSW CODE OF PRACTICE FOR PLUMBING AND DRAINAGE AND AS/NZ3500
	PRESSURE SEWERAGE CODE OF AUSTRALIA STANDARD DRAWINGS
PSS-1000	EMBEDMENT & TRENCH FILL TYPICAL ARRANGEMENT
PSS-1006	TYPICAL ARRANGEMENTS VALVE AND VENT SHAFT DETAILS
PSS-1007	TYPICAL APPURTENANCE DETAILS - FLUSHING POINT
PSS-1005	TYPICAL VALVE INSTALLATION SHROULD PIPE AND FITTINGS ASSEMBLY
	WATER SUPPLY CODE OF AUSTRALIA STANDARD DRAWINGS
WAT1205	THRUST BLOCK DETAILS CONCRETE BLOCKS
WAT-1207-V	THRUST AND ANCHOR BLOCK GATE VALVES AND VERTICAL BENDS
WAT-1307	TYPICAL APPURTENANCE INSTALLATION SCOUR ARRANGEMENTS

Willow+		Scale 100 0 100 200 300 400 500 SCALE		RAPPROVAL					CLIENT MPD INVESTMENTS PTY LTD
0			Designed GC	Drawn GC					PROJECT
	villions Lane, Alstonville NSW 2477 Phone: [02] 662 86 192		Checked MC	Date 01/04/22					JAMES CREEK ROAD SUBDIVISION
	mail: michael@waseng.com.au	Certifier			A	ISSUE FOR APPROVAL	01/04/22		PROPOSED SEWER RISING MAIN
WI	/ILLOW & SPARROW PTY LTD A.C.N. 606732512				Issue	Description	Date	Ву	JAMES CRK RD TO DIAMOND ST PUMP STATION

ROM	CONSUL CONTAC TELEPHO		CHAMBERLAIN	
ΤΟ				·
ATIO	NI			
	IN			
)				
ARE SUBJEC THE CONTRA	RVICES ALLOCAT T TO VARIABLE CTOR IS REQUIF AND FIELD CH	PLACEMENT. RED TO ACQUIRI	E LATEST SEA	КСН
		RE YOU DIG	HE CONTRACT	
	L BEFORE DU DIG .1100.com.au	TO MAINTAIN A	CURRENT SE YOU DIG" DRA	r of
	COVER SI AND SEW	HEET ER LOCALIT	Y PLAN	
ISION IAIN IMP STATION	Job No. 2022041	-CC	Drawing No.	Rev No.

C000

А

GENERAL

- G1. ALL DRAWINGS UNDER THIS PACKAGE SHALL BE READ IN CONJUNCTION WITH THE PROJECT SPECIFICATION.
- G2. ALL MATERIALS AND WORKMANSHIP SHALL BE IN ACCORDANCE AND COMPLIANCE WITH THE
 - A. RELEVANT AND CURRENT STANDARDS OF AUSTRALIA.
 - B PROVISIONS OF THE BUILDING ACT 1975
 - C. WATER SERVICES ASSOCIATION OF AUSTRALIA (WSA) WATER SUPPLY AND SEWERAGE DESIGN AND CONSTRUCTION CODES.
 - D. NSW ELECTRICITY ACT. REGULATIONS AND GUIDELINES
- G3. ANY DISCREPANCY SHALL BE REFERRED TO THE SUPERINTENDENT BEFORE PROCEEDING WITH THE WORKS.
- G4. UNLESS NOTED OTHERWISE (UNO):
 - A ALL DIMENSIONS ARE IN MILLIMETERS
 - B. ALL CHAINAGES ARE IN METERS.
 - C. ALL LEVELS ARE IN METERS TO AUSTRALIAN HEIGHT DATUM (AHD).
- G5. ALL DIMENSIONS SHOWN ON THE DRAWINGS ARE NOMINAL ONLY. THE CONTRACTOR SHALL VERIFY THE DIMENSIONS ON SITE PRIOR TO FABRICATION OR CONSTRUCTION. DRAWINGS SHALL NOT BE SCALED FOR DIMENSIONS
- G6. THE CONTRACTOR SHALL CARRY OUT CLEARING AND GRUBBING OF REQUIRED AREAS AS SPECIFIED. THIS SHALL INCLUDE THE REMOVAL OF EXISTING VEGETATION EXCEPT FLORA NOMINATED FOR PRESERVATION.
- G7. NO SUBSTITUTE MATERIALS SHALL BE USED WITHOUT THE WRITTEN APPROVAL OF THE SUPERINTENDENT. G8. THE CONTRACTOR SHALL PROVIDE ADEQUATE TEMPORARY PROTECTION AND SITE FENCING TO PREVENT
- ENTRY OF ANY UNAUTHORISED PERSONS AND ANIMALS DURING CONSTRUCTION.
- G9. THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING PIPES AND PITS AGAINST FLOTATION DURING CONSTRUCTION.
- G10. FOR DETAILS REGARDING WORKING IN PRIVATE PROPERTY REFER PROJECT SPECIFICATION
- G11. THE PROPOSED WORKS AND MATERIALS SHALL BE IN ACCORDANCE WITH THE PRESSURE SEWAGE CODE OF AUSTRALIA (WSA 07-2007-1.1) & CLARENCE VALLEY COUNCIL GUIDELINES. THE CONTRACTOR MUST HAVE A COPY OF THESE DOCUMENTS ON SITE AT ALL TIMES.
- G12. EXISTING WATER AND SEWER SERVICES SHOWN ARE INDICATIVE ONLY AND OBTAINED FROM 'YAMBA STRATEGY REPORT
- G13. EMBEDMENT & TRENCH FILL TYPICAL ARRANGEMENT AR PER PSS-1000 & WAT-1200

SURVEY, SETOUT AND SERVICES

- SS1. COORDINATE NOTES:
 - ORIGIN OF HORIZONTAL AND VERTICAL DATUM
 - PM 66736
 - EASTING: 554 815.927
 - NORTHING: 6 874 732.248
 - RI · 1 928 (AHD) MGA (MAP GRID OF AUSTRALIA 1994 - ZONE 56)

 - THIS PLAN IS ON GROUND COORDINATES ORIENTATED TO MGA AZIMUTH. TO CONVERT TO MGA GRID COORDINATES APPLY THE SCALE FACTOR OF 0.999630 BASED ON PM6673
- SS2. LOT AREAS AND BOUNDARY DIMENSIONS HAVE BEEN COMPILED FROM DEPOSITED PLANS AVAILABLE AT LAND REGISTRY SERVICE NSW. NO BOUNDARY SURVEY OR INVESTIGATION HAS BEEN MADE AND NO BOUNDARIES HAVE BEEN MARKED. BOUNDARIES SHOWN HEREON ARE PROVISIONAL AND SUBJECT TO FURTHER SURVEY. POSITION OF IMPROVEMENTS RELATIVE TO BOUNDARIES SHOWN HEREON IS DIAGRAMMATIC ONLY.
- SS3. EXISTING SURVEY CONTROL STATIONS THE CONTRACTOR SHALL ENSURE THAT SURVEY CONTROL STATIONS ARE NOT DAMAGED OR DISTURBED IN ANY WAY BY CONSTRUCTION ACTIVITIES.
- SS4 FOR SETOUT
 - A. ALL SETOUT POINTS RELATE TO THE CENTRELINE OF THE PIPELINE, UNO.
 - B. ALL SETOUT POINTS AT BENDS REFER TO THE INTERSECTION POINT (IP), UNO.
- SS5. EXISTING SERVICES:
 - THE CONTRACTOR SHALL BE RESPONSIBLE FOR PROTECTING THE EXISTING SERVICES. VERIFICATION OF THE LOCATION OF THESE SERVICES MUST BE OBTAINED PRIOR TO ANY EXCAVATION COMMENCING .
 - ONLY UNDERGROUND SERVICES IN THE IMMEDIATE VICINITY OF THIS SURVEY HAVE BEEN LOCATED. в INFORMATION OF THE EXISTING SERVICES ARE SHOWN IN THE DRAWINGS IN GOOD FAITH. NO GUARANTEE IS GIVEN OR IMPLIED THAT SUCH INFORMATION IS ACCURATE OR COMPLETE. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO LOCATE THE POSITION OF THE EXISTING SERVICES BEFORE COMMENCING CONSTRUCTION. THE CONTRACTOR IS REQUIRED TO EXERCISE CARE WHEN IN CLOSE PROXIMITY OF SERVICES AND EXCAVATION IN GENERAL. CAREFUL HAND EXCAVATION IS RECOMMENDED WHEN WITHIN CLOSE PROXIMITY. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY DAMAGE TO THE EXISTING SERVICES DURING THE COURSE OF THE CONTRACT.
 - IN THE EVENT OF SERVICES DEVIATING FROM LOCATIONS SHOWN OR PRESENT BUT NOT SHOWN ON THE DRAWINGS, THE CONTRACTOR SHALL GIVE 3 DAYS NOTICE PRIOR TO THE COMMENCEMENT OF ANY CONSTRUCTION ACTIVITY THAT MAY AFFECT THE SERVICE.
 - CONTRACTOR TO OBTAIN PRIOR APPROVAL FROM THE SUPERINTENDENT FOR ANY DEVIATIONS D. REQUIRED TO AVOID EXISTING SERVICES.

EXCAVATION AND BACKFILLING

- EB1. ALL EXCAVATION, BACKFILLING AND COMPACTION SHALL BE CARRIED OUT IN ACCORDANCE WITH AS 3798.
- EB2. PRIOR TO COMMENCEMENT OF SITE CLEARANCE AND EXCAVATION, THE CONTRACTOR SHALL MAKE ALL ENQUIRIES AND INVESTIGATIONS TO PROTECT FROM DAMAGE ALL PUBLIC AND PRIVATE PROPERTIES & SERVICES.
- EB3. CLEARING AND DISTURBING OF VEGETATION SHALL BE KEPT TO A MINIMUM AND SHALL BE LIMITED TO AREAS CONTAINING THE EXCAVATIONS FOR THE CONSTRUCTION OF THE REQUIRED WORKS.

- EB4. ENSURE MINIMAL DISTURBANCE AND APPROPRIATE MANAGEMENT TO ACID SOILS. ACID SULFATE SOILS CONTAMINATED LAND, AND HIGHLY ERODIBLE AND DISPERSIBLE SOILS. THE CONTRACTOR SHALL UNDERTAKE ALL NECESSARY SOIL TREATMENT IN ACCORDANCE WITH THE CONTRACTOR'S APPROVED ACID SULFATE SOILS MANAGEMENT PLAN.
- EB5. ALL TOPSOIL STRIPPED FROM WORK AREAS SHALL BE STOCKPILED FOR LATER RE-SPREADING. RE-SPREAD SHALL BE TO A MINIMUM DEPTH OF 100mm TO A MAXIMUM 300mm
- EB6. COMPACTION OF TRENCH BACKFILL MATERIAL IN NON-ROAD PAVEMENT AREAS IS TO BE UNDERTAKEN IN ACCORDANCE WITH THE REQUIREMENTS OF AS3798

EB7. ALL EXCAVATION OF TRENCHES SHALL BE:

- A. THE MINIMUM NECESSARY TO INSTALL THE PIPELINE AND ASSOCIATED STRUCTURES.
- B. MADE SECURE AGAINST MOVEMENT BY MEANS OF STABLE BATTERS, SHEET PILING OR ANY OTHER SUITABLE SYSTEM.
- C. COMPLETELY DRAINED AT ALL TIMES BY TEMPORARY DRAINS OR PUMPING WHEN NECESSARY
- THE BOTTOM OF THE EXCAVATION FOR A TRENCH OR A FOUNDATION PIT SHALL BE FREE FROM LOOSE EXCAVATED MATERIAL AND SHALL SATISFY THE ALLOWABLE BEARING PRESSURE OF 50kPa.
- EB8. PIPELINES SHALL NOT BE LAID ON 'UNCONTROLLED' FILL MATERIAL OR LOOSE / SOFT ALLUVIAL SOILS. UNDER SUCH SOIL CONDITIONS, SOIL BELOW THE PIPE INVERT LEVEL MUST BE REMOVED AND REPLACED WITH 'CONTROLLED' FILL MATERIAL CERTIFICATES SHALL BE LODGED WITH THE CONTRACT MANAGER CERTIFYING THE FILL IS 'CONTROLLED' FILL COMPACTED TO 95% DDR TO AS 1289.5.1.1.
- BACKFILLING SHALL BE CARRIED OUT USING THE MATERIALS SPECIFIED IN THE DRAWINGS AND PROJECT SPECIFICATION. UNO BACKFILL EB9. SHALL BE COMPACTED IN 150mm THICK FINISHED LAYERS, CONDITIONED AND COMPACTED IN ACCORDANCE WITH THE PROJECT SPECIFICATION.
- EB10. ALL FILL MATERIAL PLACED SHALL BE COMPACTED AND TRIMMED TO MATCH WITH THE FINAL EARTHWORKS LEVELS AND PROFILES SHOWN ON THE DRAWINGS AND TESTED IN ACCORDANCE WITH THE PROJECT SPECIFICATION.
- EB11. THE GROUND SURFACE EXPOSED AFTER TRIMMING SHALL BE COMPACTED IN ACCORDANCE WITH AS 3798
- EB12. ROADWAY RESTORATION:
 - A. PAVEMENT AND DRAINAGE WORKS WITHIN ROAD CORRIDORS ARE TO BE CONSTRUCTED IN ACCORDANCE WITH CLARENCE VALLEY COUNCIL STANDARD DRAWINGS AND SPECIFICATIONS AND TO THE SATISFACTION OF COUNCIL OFFICERS.
 - B. THICKNESS OF RE-INSTATED ROAD PAVEMENT LAYERS TO MATCH THE EXISTING.
 - C. SUB-GRADE AND ROAD PAVEMENTS ARE TO BE COMPACTED TO 98% DDR TO AS 1289.5.2.1
- EB 13. ALL DISTURBED GRASSED AREAS SHALL BE REINSTATED WITH TURF. WATERING AND MAINTENANCE OF THE TURF TO ACHIEVE ESTABLISHMENT IS THE CONTRACTORS RESPONSIBILITY.
- EB14. ALL VALVE PIT LIDS (WITH THE EXCEPTION OF THE PUMP WELL) SHALL BE CONSTRUCTED TO ENSURE THE ARE LEVEL WITH THE ADJOINING GROUND SURFACE.

PIPEWORKS

- P1 FOR PIPES OTHER THAN POLYETHYLENE
 - A. PROVIDE SUFFICIENT TRENCH DEPTH AND WIDTH TO ALLOW FOR DEFLECTION OF PIPES AT JOINTS.
 - B. CHANGES IN HORIZONTAL AND VERTICAL ALIGNMENT, OTHER THAN BY MANUFACTURED BENDS, SHALL BE ACHIEVED BY DEFLECTING THE PIPES AT JOINTS. MAXIMUM DEFLECTIONS SHALL BE AS PER MANUFACTURER'S RECOMMENDATIONS.
- WHERE CONNECTING TO ANY EXISTING PIPEWORK, THE LEVEL AND THE SIZE OF THE EXISTING PIPEWORK SHALL BE CONFIRMED BY THE CONTRACTOR PRIOR TO CONNECTION. P2.
- P3 IF CUTTING OF PIPES IS NECESSARY ON SITE REFER TO MANUFACTURERS REQUIREMENTS
- P/ MINIMUM CLEARANCE TO EXISTING SERVICES SHALL BE IN ACCORDANCE WITH WSA03-2011 CODE UNO.
- MINIMUM COVER TO ALL PIPELINES UNDER EXISTING OR FUTURE ROAD FORMATION IN RMS AND CONTROLLED P5. RESERVES SHALL BE BASED ON RMS SPECIFICATIONS AND DRAWINGS. ROAD
- P6. ALL PIPES SHALL HAVE MARKER TAPE TO AS 2648.1 COLOURED AS FOLLOWS:
 - A. WATER MAIN GREEN;
 - B SEA WATER TBC
- THE MARKER TAPES SHALL BE PLACED ON TOP OF THE PIPE EMBEDMENT AND CONTAIN A CONTINUOUS METALLIC STRIP
- P7. FOR ALL POLYETHYLENE PIPEWORK:
- A. PIPE TO BE MANUFACTURED IN ACCORDANCE WITH AS 4130.
- B. POLYETHYLENE FITTINGS TO BE MANUFACTURED IN ACCORDANCE WITH AS 4129.
- C. PIPE TO BE INSTALLED IN ACCORDANCE WITH AS 2033 AND WSA01-2004 CODE.
- D. POLYETHYLENE PIPE MAY BE CURVED ON SITE TO A MINIMUM RADIUS OF 25 TIMES THE PIPE OUTSIDE DIAMETER (UNO) PROVIDED THE AMBIENT TEMPERATURE IS ABOVE 15°C. PIPES MUST NOT BE BENT AROUND STAKES. SAND BAGS MAY BE USED TO BEND THE PIPES
- E. THE SEWER RISING MAIN SHALL BE SOLID CREAM OR SHEATHED CREAM IN COLOUR
- F. FOR WELDING OF POLYETHYLENE PIPEWORK:
 - 2. PE WELDING MUST BE CARRIED OUT ONLY BY CERTIFIED PERSONS:
 - a. IN ACCORDANCE WITH PARTEC REQUIREMENTS.
 - WHO HAS SUCCESSFULLY CARRIED OUT PREVIOUS PRESSURE PIPELINE WELDING PROJECTS.
 - 2. FUSION BUTT-WELDED JOINTS SHALL BE MADE IN ACCORDANCE WITH WSA01-2004, AS 2033, AS 2566.2 AND THE PIPE MANUFACTURER'S REQUIREMENTS AND RECOMMENDATIONS.
 - JOINTS SHALL ONLY BE MADE BETWEEN PIPE MATERIALS OF THE SAME GRADE AS DEFINED IN AS4130. PILOT WELDS SHALL BE MADE AND TESTED FOR ANY PROPOSED JOINTS BETWEEN PIPES FROM DIFFERENT MANUFACTURERS.
 - FUSION BUTT-WELDED JOINTS SHALL ACHIEVE AT LEAST 90% OF THE TENSILE STRENGTH OF THE PARENT PIPE. INTERNAL WELD BEADS SHALL BE REMOVED.
 - ALL WELDING SHALL BE PERFORMED UNDER CONTROLLED ENVIRONMENTAL CONDITIONS. FIELD WELDING SHALL BE CARRIED OUT IN SHELTERS TO PREVENT DUST AND WATER CONTAMINATION. THE SHELTERS SHALL REMAIN IN PLACE UNTIL COMPLETION OF THE JOINT COOLING PERIOD. PIPE ENDS SHALL BE BLOCKED OFF TO PREVENT WIND CHILL AND DIRT CONTAMINATION.
 - WELDING MACHINES USING HAND WOUND CARRIAGES WITHOUT PRESSURE GAUGES SHALL NOT BE USED. AT ALL TIMES DURING WELDING, THE WELDER SHALL HAVE A HAND-HELD TEMPERATURE

Willow+ Sparrow Dillions Lane, Alstonville NSW 2477 Phone: [02] 662 86 192	Scale Issue: ISSUE FOR APPR Designed Drawn GC GC Checked Date MC 01/04/2	/AL			CLIENT MPD INVESTMENTS PTY LTD PROJECT JAMES CREEK ROAD SUBDIVISION	GENERAL NOTES SHEET 1 OF 2		
Email: michael@waseng.com.au	Certifier	A	ISSUE FOR APPROVAL	01/04/22	PROPOSED SEWER RISING MAIN		Drawing No. F	Rev No.
WILLOW & SPARROW PTY LTD A.C.N. 606732512		Issue	Je Description	Date By	JAMES CRK RD TO DIAMOND ST PUMP STATION	2022041-CC	C001	A

- FIELD WELDING IS CARRIED OUT

P8. FOR ALL DI PIPE WORK:

P9. FOR ALL MILD STEEL PIPEWORK

AS4087 PN16 UNO.

Β.

Β.

Β.

TESTING

PROJECT SPECIFICATION.

T1.

T2.

T4.

P11

P10. FOR ALL FLANGES:

С RECOMMENDATION

SENSING DEVICE CAPABLE OF CHECKING THE TEMPERATURE OF THE HEATER PLATE AT THE CIRCUMFERENCE OF THE WELD. PILOT WELDING TRIALS SHALL BE COMPLETED AND APPROVED BY THE SUPERINTENDENT BEFORE THE THE PILOT WELDS SHALL BE SUBJECTED TO TENSILE STRENGTH TESTING, TENSILE FRACTURE TESTING AND FLEXURAL BEAM TESTING, BY A THIRD PARTY APPROVED BY THE SUPERINTENDENT 9. ACCEPTANCE CRITERIA FOR THE PILOT WELDS SHALL INCLUDE: AT LEAST 90% TENSILE STRENGTH OF THE PARENT PIPE SECTION TENSILE FRACTURES ONLY IN DUCTILE MANNER WITH NO EVIDENCE OF CONTAMINATION OR DISLOCATIONS ON THE WELD FRACTURE SURFACE; c. NO FRACTURE OF THE WELD IN FLEXURAL BEAM TESTING. A. ALL DICL PIPES & FITTINGS MUST BE IN ACCORDANCE WITH AS 2280. PIPES IN PITS AND WELLS SHALL BE FUSION BONDED EPOXY COATED TO AS 4158. BURIED PIPES TO BE BITUMEN COATED AND COVERED WITH POLYETHYLENE SLEEVING AS PER THE MANUFACTURER'S A. PIPES & FITTINGS SHALL COMPLY WITH AS 1579 ALL FITTINGS (COMPOSITE BENDS, BRANCHES ETC..) SHALL BE BUTT WELDED FROM OUTSIDE USING ROOT FILL AND HOT-PASS METHOD IN ACCORDANCE WITH AS 1554. PIPE ENDS MUST BE BEVELLED TO ACHIEVE A SOUND WELD. A. ALL FLANGES MUST BE IN ACCORDANCE WITH AS 4087 UNO. ALL VALVES AND FITTINGS SHALL BE DRILLED TO AS 2129 TABLE D OR ALL BOLTS, NUTS AND WASHERS MUST BE 316 STAINLESS STEEL (GRADE B8M) UNO, BOLTS ARE TO BE ASSEMBLED WITH ANTI-GALLING COMPOUND "DURALAC" OR WITH AN APPROVED EQUIVALENT. ALL BURIED FLANGES ARE TO BE WRAPPED WITH "DENSO" PETROLATUM TAPE TO MANUFACTURER'S REQUIREMENTS PRIME, CAULK AND WRAP ALL BURIED FLANGES AND BOLTS WITH DENSO PETROLATUM PRODUCTS OR APPROVED EQUIVALENT AS PER THE MANUFACTURER'S RECOMMENDATIONS.

EXTERNAL COATINGS ARE NOT TO BE REMOVED WHEN THE PIPE FITTINGS ARE SURROUNDED OR COVERED IN CONCRETE.

THRUST BLOCKS AND ANCHOR BLOCKS

TB1.THRUST RESTRAINTS SHALL BE PROVIDED FOR RUBBER RING JOINTED MSCL AND DICL PIPEWORK AT ALL TEES, BENDS, TAPERS AND CHANGES IN DIRECTION.

TB2. THE BEARING FACE OF THE THRUST BLOCKS MUST BE CAST AGAINST UNDISTURBED GROUND

TB3. CONCRETE FOR THRUST BLOCKS SHALL BE N32 FOR REINFORCED AND N25 FOR UNREINFORCED UNO.

TB4. CONCRETE MUST NOT SPILL OVER SOCKET JOINTS.

TB5. VERTICAL THRUST BLOCKS MUST BE EMBEDDED INTO UNDISTURBED GROUND

TB6. CONCRETE MUST BE CURED FOR 72HRS (MIN) PRIOR TO PRESSURE TESTING.

TB7. ALL DI PUDDLE/ THRUST FLANGES SHALL BE FACTORY FITTED ONTO PIPE. A MACHINE GROOVE SHALL BE CUT INTO THE OUTSIDE SURFACE OF THE PIPE AND THE PUDDLE FLANGE MACHINED ACCORDINGLY. TO PROVIDE A NOMINAL INTERFERENCE IN ACCORDANCE WITH AS 2280.

TB8. THRUST BLOCK IN ACCORDANCE WITH SEQ WS&S D&C STD DRG SEQ-WAT-1205-1

ALL TESTING SHALL BE CARRIED OUT BY A THIRD PARTY N.A.T.A APPROVED TESTER IN ACCORDANCE WITH THE

THE TEST PROCEDURE FOR RISING MAINS SHALL BE IN ACCORDANCE WITH CLAUSE 36.5 OF WSA04-2005. THE HYDROSTATIC TEST PRESSURE FOR THE PROPOSED RISING MAIN SHALL BE MINIMUM 900kPa THE FREQUENCY OF COMPACTION TESTING SHALL BE IN ACCORDANCE WITH CLAUSE 36.3.4.4 OF WSA 04-2005. FOR EACH TRENCHED ROAD CROSSING, A COMPACTION TEST IN EACH 150mm LAYER OF FILL IS REQUIRED. AUDIT AND FINAL INSPECTIONS OF THE WORKS CONSTRUCTED BY THE CONTRACTOR MUST BE ARRANGED TWO DAYS BEFORE-HAND WITH THE SUPERINTENDENT

CONCRETE

- C1. ALL CONCRETE WORKMANSHIP AND MATERIALS SHALL BE IN ACCORDANCE WITH AS 3600 AND THE CONCRETE SPECIFICATION.
- C2. EXPOSURE CLASSIFICATION OF CONCRETE SHALL BE C2.1 MEMBERS IN CONTACT WITH GROUND (NON AGGRESSIVE SOIL)- 'B1' (AS 5100.5 - 2004)
- C2.2 SURFACES IN SEA WATER ENVIRONMENT 'C' (AS 3735 2001) C3. CONCRETE SHALL BE FROM AN APPROVED SOURCE AND SHALL COMPLY WITH THE REQUIREMENTS OF THE
 - FOLLOWING STANDARDS UNO
 - C.3.1 AS 3600 CONCRETE STRUCTURES
 - C3.2 AS3737 CONCRETE STRUCTURES RETAINING LIQUID
 - C3.3 AS4671 STEEL REINFORCING BARS FOR CONCRETE
 - C3.4 AS3972 PORTLAND AND BLENDED CEMENTS C3.5 AS1379 - SPECIFICATION AND SUPPLY OF CONCRETE
 - C3.6 AS2758.1 CONCRETE AGGREGATES
 - C3.7 AS1141 METHODS FOR SAMPLING AND TESTING AGGREGATES
 - C3.8 AS1478 CHEMICAL ADMIXTURES FOR CONCRETE
 - C3.9 AS1012 METHODS FOR TESTING CONCRETE
- C3.10 AS3582 SUPPLEMENTARY CEMENTITIOUS MATERIALS FOR USE WITH PORTLAND CEMENT C4. CONCRETE GRADE FOR SPECIFIC STRUCTURES UNO SHALL BE AS FOLLOWS

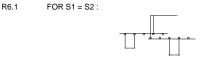
C4.1	BLINDING CONCRETE	N20/20
C4.2	PUMP WELL	N40/20
C4.3	PITS CHAMBERS	N40/20
C4.5	THRUST BLOCKS	N32/20

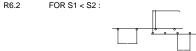
- C5. THE MAXIMUM SIZE OF AGGREGATE IN THE CONCRETE SHALL BE 20mm
- CONCRETE MIX DESIGN INCLUDING PROPORTIONS OF ADDITIVES AND CEMENTITIOUS REPLACEMENT C6. MATERIALS. SHALL BE SUBMITTED TO THE SUPERINTENDENT FOR APPROVAL PRIOR TO PLACEMENT. CALCIUM CHLORIDE SHALL NOT BE USED IN ANY MIX.
- C7. A MIX DESIGN USING A HIGHER SLUMP AND SMALLER AGGREGATE SIZE SHALL BE CONSIDERED BY THE SUPERINTENDENT WHERE CONCRETING IS DONE BY PUMPING.
- C8. MINIMUM CLEAR CONCRETE COVER TO ALL REINFORCEMENT SHALL BE AS FOLLOWS, UNLESS NOTED OTHERWISE ON THE DRAWINGS
- C8.1 CAST AGAINST FORM, TOP OF MEMBER, INTERNAL FACES - 40mm C8.2 CAST AGAINST GROUND IF THE SURFACE OF THE CONCRETE
- IS PROTECTED BY A DAMP-PROOF MEMBRANE
- C8.3 CAST AGAINST GROUND
- C8.4 CONCRETE IN CONTACT WITH SEA WATER (EXPOSURE CLASSIFICATION 'C') - 70mm - 50mm
- C8.5 UNLESS NOTED OTHERWISE
- C9. SIZES OF CONCRETE ELEMENTS SHOWN ON THE DRAWINGS DO NOT INCLUDE THICKNESS OF APPLIED FINISHES.
- C10. THE FINISHED CONCRETE SHALL BE A DENSE HOMOGENEOUS MASS, COMPLETELY FILLING THE FORMWORK, THOROUGHLY EMBEDDING THE REINFORCEMENT AND FREE OF ANY STONE POCKETS OR VOIDS. CONCRETE SHALL BE VIBRATED BY MECHANICAL VIBRATORS DURING PLACEMENT.

- 40mm

- 50mm

- C11. ALL FORMED EXPOSED EDGES HAVING A CONTAINED ANGLE OF LESS THAN 120° AND RE-ENTRANT CORNERS SHALL BE CHAMFERED OR FILLETED 25mm UNO.
- C12. NO PENETRATIONS, CHASES OR TEMPORARY FIXTURES OTHER THAN THOSE SHOWN ON THE DRAWINGS ARE ERMITTED IN THE CONCRETE MEMBERS WITHOUT PRIOR APPROVAL OF THE SUPERINTENDENT
- C13. REINFORCEMENT AT PENETRATIONS SHALL BE TREATED THUS: C13.1 FOR PENETRATIONS WITH DIMENSIONS SMALLER THAN 150mm, DO NOT CUT REINFORCEMENT. INSTEAD, DISPLACE REINFORCEMENT TO EACH SIDE OF PENETRATION UNO.
- C13.2 FOR PENETRATIONS WITH DIMENSIONS LARGER THAN 150mm, PLACE REINFORCEMENT IN REQUIRED POSITIONS AND CUT TO SUIT PENETRATION, PROVIDE ADDITIONAL BARS TO MATCH. THE SIZE, LENGTH AND NUMBER OF BARS CUT, AND PLACE EQUALLY ON ALL SIDES OF THE PENETRATION UNO. ADDITIONAL CIRCULAR TRIMMER BAR SHALL ALSO BE PROVIDED IN EACH FACE.
- C14. CONSTRUCTION JOINTS SHALL BE PROPERLY FORMED AND USED ONLY WHERE SHOWN ON THE DRAWINGS OR SPECIFICALLY APPROVED BY THE SUPERINTENDENT FURTHER CONCRETE SURFACES AGAINST WHICH NEW CONCRETE IS TO BE PLACED SHALL BE CLEAN, FREE OF ALL LAITANCE, AND BE DAMPENED DOWN PRIOR TO COMMENCEMENT OF POURING NEW CONCRETE.
- C15. ALL CONCRETE INTERFACES ARE TO BE ROUGHENED TO ENSURE SATISFACTORY BOND BETWEEN INSITU CONCRETE AND PRECAST CONCRETE OR BETWEEN DIFFERENT POURS OF INSITU CONCRETE UNO. ALL CONCRETE SURFACES TO BE FREE OF LAITANCE.
- C16. ALL PROPRIETARY FIXINGS TO CONCRETE MEMBERS (CHEMICAL ANCHORS ETC) SHALL BE INSTALLED STRICTLY IN ACCORDANCE WITH THE FIXING MANUFACTURER'S RECOMMENDATIONS.
- C17. CHEMICAL ANCHORS FOR FIXINGS TO CONCRETE SHALL BE AS SHOWN ON THE DRAWINGS
- C18. INITIAL CURING OF CONCRETE SHALL COMMENCE NO LATER THAN 2 HOURS AFTER FINISHING OPERATIONS HAVE BEEN COMPLETED. THE CONCRETE SHALL BE KEPT CONTINUOUSLY MOIST AT LEAST OVERNIGHT BY C19.1 PONDING OR CONTINUOUS SPRINKLING WITH WATER
 - C19.2 USE OF AN ABSORPTIVE COVER KEPT CONTINUOUSLY WET
 - C19.3 COATING WITH AN APPROVED SPRAYED MEMBRANE CURING COMPOUND.
- C19. FINAL CURING SHALL IMMEDIATELY FOLLOW INITIAL CURING AND SHALL BE CONTINUED FOR 7 DAYS. ONE OF THE FOLLOWING CURING METHODS SHALL BE ADOPTED FOR FINAL CURING
 - PONDING OR CONTINUOUS SPRINKLING WITH WATER
 - USE OF AN APPROVED MOISTURE RETAINING COVERING SUCH AS HEAVY GAUGE CLEAR C20.2 POLYTHENE SHEETING OR BUILDING PAPER FIRMLY HELD AGAINST THE CONCRETE SURFACES TO PREVENT AIR CIRCULATION AT THE CONCRETE SURFACES. SUCH COVERS SHALL BE MAINTAINED UNDAMAGED DURING THE CURING PERIOD.
 - C20.3 COATING WITH AN APPROVED SPRAYED MEMBRANE CURING COMPOUND.
- C20. PLACE A 50mm MINIMUM THICKNESS CONCRETE BLINDING LAYER UNDER ALL CONCRETE CAST AGAINST THE GROUND.
- C21. COMPLIANCE TESTING AND SAMPLING OF CONCRETE SHALL BE IN ACCORDANCE WITH AS 3600, AS 1379, AS 1012, AND OTHER RELEVANT SPECIFICATIONS


- R1. REINFORCEMENT SHOWN ON THE DRAWINGS IS REPRESENTED DIAGRAMMATICALLY AND NOT NECESSARILY SHOWN IN TRUE PROJECTION.
- REINFORCING STEEL SHALL BE GRADE D500N TO AS/NZS 4671 (HOT ROLLED DEFORMED BAR) OR GRADE R250N R2 TO AS/NZS 4671 (HOT ROLLED PLAIN ROUND BAR). REINFORCEMENT MESH SHALL BE CLASS L TO AS 4671
- (500MPa GRADE) UNO.
- R3. REINFORCEMENT ABBREVIATIONS INDICATE THE FOLLOWING:-
 - R3.1 FF FACH FACE
 - R3.2 NF NEAR FACE
 - R3.3 FF — FAR FACE


REINFORCING

- R3.4 EW EACH WAY
- R3.5 T or TOP — ТОР R3.6 B or BTM — ВОТТОМ
- REBENDING OF REINFORCEMENT BY MECHANICAL OR ANY OTHER MEANS IS NOT PERMITTED WITHOUT THE APPROVAL OF THE SUPERINTENDENT.
- R5. REINFORCEMENT SHALL BE LAPPED ONLY IN THE LOCATIONS SHOWN ON THE DRAWINGS OR AS OTHERWISE APPROVED BY THE SUPERINTENDENT. WHERE THE LAP LENGTH IS NOT SHOWN IT SHALL BE SUFFICIENT TO DEVELOP THE FULL STRENGTH OF THE REINFORCEMENT. BAR LAP LENGTHS SHALL BE AS SHOWN BELOW UNO

BAR DIAMETER (mm)	HORIZONTAL B. THAN 300mm O CAST BELOW T		ALL OTHER B	ARS (mm)
	f _c = 32MPa	f _c = 40MPa	f _c = 32MPa	f _c = 40MPa
10 12 16 20 24 28 32	500 600 800 1050 1300 1550 1850	450 525 725 925 1150 1400 1650	375 450 625 800 1000 1200 1425	350 400 550 725 900 1075 1275

R6. FABRIC REINFORCEMENT LAPS

- R7. MECHANICAL SPLICES SHALL ONLY BE USED WHERE APPROVED BY THE SUPERINTENDENT
- REINFORCEMENT SHALL NOT BE WELDED UNLESS SHOWN ON THE DRAWINGS OR APPROVED BY THE R8. SUPERINTENDENT; ALSO REINFORCEMENT SHALL HAVE THE REQUIRED COVER TO THE PIPE WORK. CONDUITS. ETC
- R9. ALL REINFORCEMENT SHALL BE SECURELY SUPPORTED ON PLASTIC OR CONCRETE BAR CHAIRS AT NOT GREATER THAN ONE METRE CENTRES EACH WAY. ALL REINFORCEMENT SHALL BE SECURELY TIED WITH GALVANISED WIRE TIES. TIE ENDS SHALL NOT EXTEND INTO THE COVER ZONE.
- R10. LAPS IN MESH SHALL BE THE SPACING OF TRANSVERSE WIRES PLUS 50mm UNO.
- R11. REINFORCING MESH SHALL NOT BE PULLED INTO POSITION THROUGH THE WET CONCRETE.

STEELWORK

- S1. ALL STEELWORK SHALL COMPLY WITH THE REQUIREMENTS OF AS 4100 UN0.
- S2. ALL STEELWORK SHALL BE FABRICATED FROM MATERIAL COMPLYING WITH AS 3678 AND AS 3679.
- S3. FABRICATION SHALL COMPLY WITH THE SPECIFICATION AND THE REQUIREMENTS OF AS 4100 AND AS 1554 WHERE APPLICABLE.
- TWO COPIES OF ALL WORKSHOP DRAWINGS SHALL BE SUBMITTED TO THE SUPERINTENDENT FOR REVIEW 10 S4 WORKING DAYS PRIOR TO FABRICATION
- ALL PLATES, CLEATS, GUSSETS, STIFFENERS ETC., SHALL BE 10mm THICK UNO., S5.
- CONTACT SURFACES BETWEEN DISSIMILAR METALS (ALUMINIUM AND GALVANISED STEEL, ALUMINIUM AND S6. STAINLESS STEEL, STAINLESS STEEL AND GALVANISED STEEL ETC...) SHALL BE INSULATED WITH RUBBER WASHERS UNO
- ALL MASONRY ANCHORS SHALL BE 316 STAINLESS STEEL AND FITTED WITH ISOLATION WASHERS BETWEEN S7. STAINLESS STEEL AND GALVANISING

CONCRETE RE-INSTATEMENT

- CR1. THOUROUGHLY SCABBLE BACK THE EXISTING SURFACE AND CLEAN BY WATER BLAST BEFORE POURING THE NEW CONCRETE.
- CR2. AFTER CLEANING THE EXISTING CONCRETE SURFACE APPLY AN APPROVED BONDING AGENT AND HYDROPHILIC WATERSTOP BEFORE POURING NEW CONCRETE. COMPLY WITH MANUFACTURER'S REQUIREMENTS FOR THE PRODUCT AND ENSURE THAT NEW CONCRETE IS PLACED WITHIN THE TIME LIMITS SPECIFIED FOR THE BONDING AGENT.
- CR3. SHOULD DISTURBANCE TO ANY FOOTPATH BE NECESSARY THEN THE RESTORATION SHALL INCLUDE THE REPLACEMENT OF THE WHOLE CONCRETE SLAB SEGMENTS BETWEEN JOINTS FOR THE FULL WIDTH IN ACCORDANCE WITH COUNCIL'S STANDARD DRAWING SD013 "FOOTPATH AND CYCLEWAY DETAILS"

Willow+	Scale	Issue: ISSUE FOI	R APPROVAL	\square			CLIENT MPD INVESTMENTS PTY LTD	GENERAL NOTES		
Sparrow Dillions Lane, Alstonville NSW 2477 Phone: [02] 662 86 192		Designed GC Checked MC	Drawn GC Date 01/04/22				PROJECT JAMES CREEK ROAD SUBDIVISION	SHEET 2 OF 2		
ENGINEERING+DESIGN WILLOW & SPARROW PTY LTD A.C.N. 606732512	Certifier			A	ISSUE FOR APPROVAL Description	01/04/22	PROPOSED SEWER RISING MAIN JAMES CRK RD TO DIAMOND ST PUMP STATION	Job No. 2022041-CC	Drawing No.	Rev No.

- STAINLESS STEEL
- ST1 1 AS1444
- ST1.2 AS/NZS 4673 STAINLESS STEEL SHEET ST2. ALL STAINLESS STEEL SHALL BE GRADE 316 UN0.
- SUPERINTENDENT
- E316L UNO.
- STEEL BOLTS PRIOR TO ASSEMBLY
- WORKING DAYS PRIOR TO FABRICATION

ALUMINIUM

- WITH AS 1734 AND AS 1866
- A2. UNO, WELDED CONNECTIONS SHALL BE AS FOLLOWS :
- A3. GRIND OFF ALL SHARP EDGES AFTER FABRICATION.
 - A5.
 - ITEMS ARE TO BE APPROVED BY THE SUPERINTENDENT
 - WORKING DAYS PRIOR TO FABRICATION

ENVIRONMENT MANAGEMENT

- LONG PANTS AND STEEL CAP BOOTS AT ALL TIMES.
- CONSULTATION AND ACCEPTANCE OF COUNCIL.

TRAFFIC MANAGEMENT

- FOR TEMPORARY TRAFFIC ARRANGEMENTS
- COMMENCEMENT OF WORK

ST1. STAINLESS STEEL SHALL COMPLY WITH THE FOLLOWING AUSTRALIAN STANDARDS - STAINLESS STEEL PLATE ST3. ALL STAINLESS STEEL WHICH IS TO BE WELDED SHALL BE 316L. WHERE 316L IS NOT AVAILABLE CONSULT THE ST4. ALL WELDING OF STAINLESS STEEL SHALL CONFORM WITH AS/NZS 1554.6. ALL WELDING CONSUMABLES TO BE ST5. ALL STAINLESS STEEL WELDS SHALL BE PICKLED AND PASSIVATED. ST6. APPLY A NICKEL BASED LUBRICANT OR NICKEL IMPREGNATED TAPE TO THE THREADS OF ALL STAINLESS ST7. TWO COPIES OF ALL WORKSHOP DRAWINGS SHALL BE SUBMITTED TO THE SUPERINTENDENT FOR REVIEW 10 A1. UNO, ALUMINIUM SHALL BE GRADE 6061 - T6. ALL ALUMINIUM SECTIONS SHALL COMPLY A2.1 BUTT WELDS SHALL BE WELD QUALITY 'A' IN ACCORDANCE WITH AS 1665

A2.2 FILLET WELDS SHALL BE WELD QUALITY 'B' IN ACCORDANCE WITH AS 1665

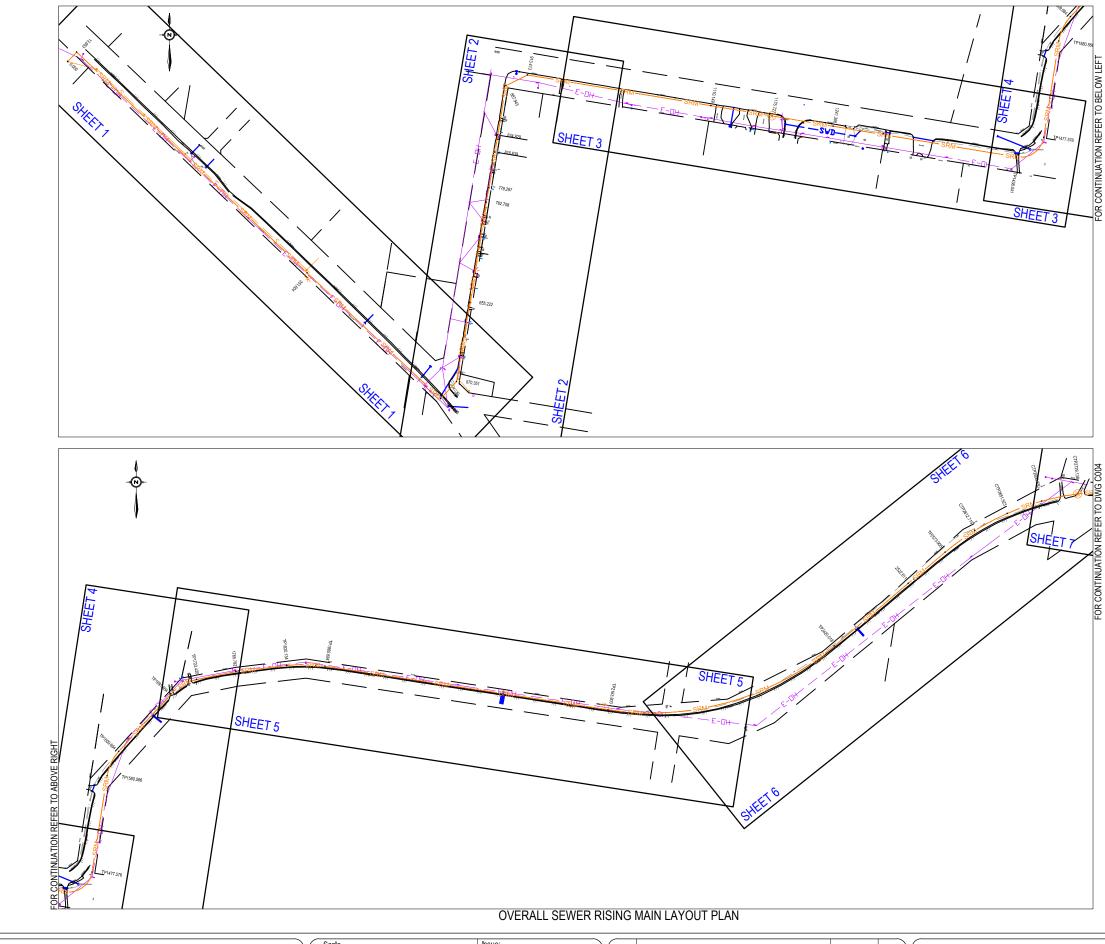
A2.3 FILLET WELDS SHALL BE 6mm ALL ROUND USING FILLER ALLOY 5356

A4. PROVIDE NYLON OR POLYTHENE WASHERS BETWEEN ALUMINIUM AND CONCRETE INTERFACES.

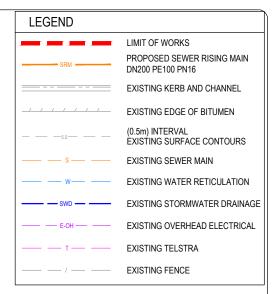
ALL FASTENERS SHALL BE GRADE 316 STAINLESS STEEL. ISOLATE ALL DISSIMILAR METALS. THE ISOLATION

TWO COPIES OF ALL WORKSHOP DRAWINGS SHALL BE SUBMITTED TO THE SUPERINTENDENT FOR REVIEW 10

EM1. ALL WORKS ARE TO BE IN ACCORDANCE WITH THE CONTRACTOR'S APPROVED ENVIRONMENTAL MANAGEMENT

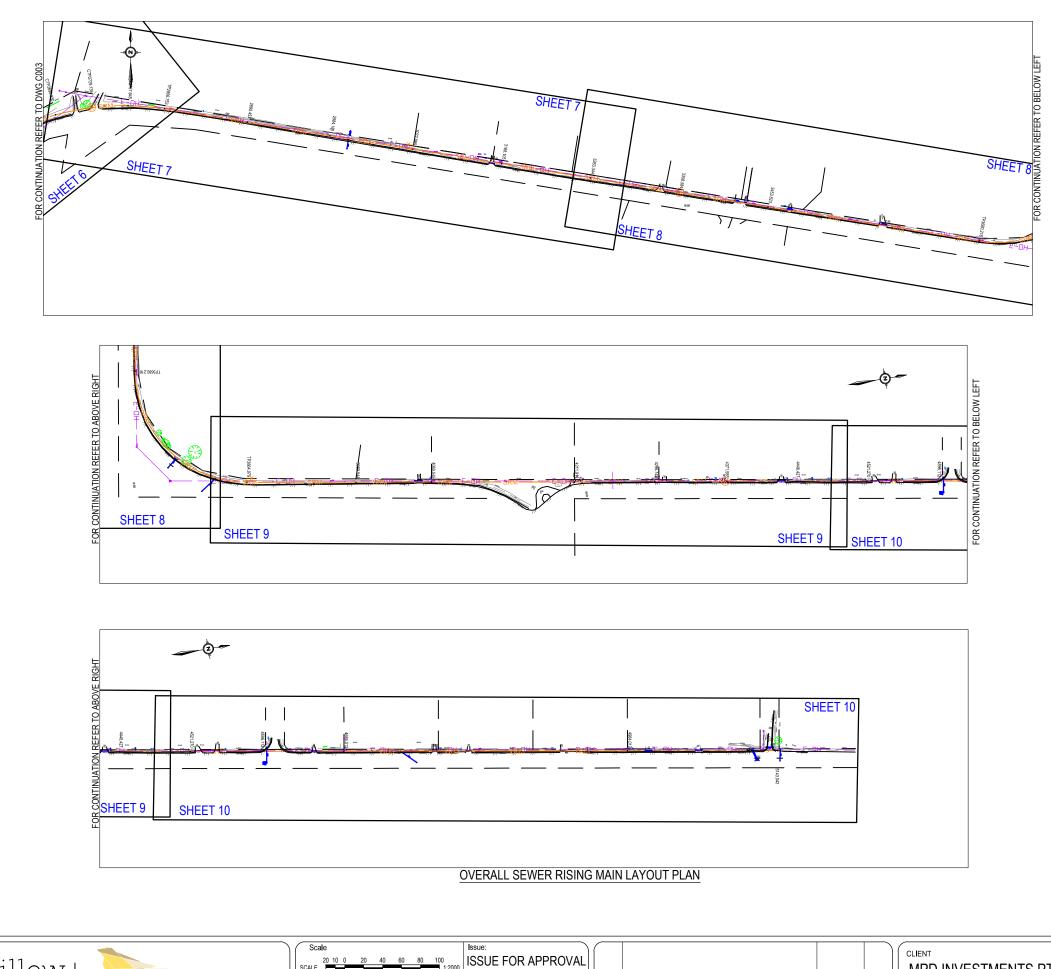

EM2. SITE TO BE ASSESSED FOR DANGEROUS FLORA AND FAUNA PRIOR TO CONSTRUCTION. WORKERS TO WEAR EM3. PRUNING OF TREES SHOWN ON THESE DRAWINGS "TO BE RETAINED" IS NOT PERMITTED WITHOUT PRIOR

TM1. ALL WORKS ARE TO BE IN ACCORDANCE WITH THE CONTRACTOR'S APPROVED TRAFFIC MANAGEMENT PLAN. TM2. THE CONTRACTOR SHALL MINIMISE ALL OBSTRUCTIONS TO TRAFFIC.

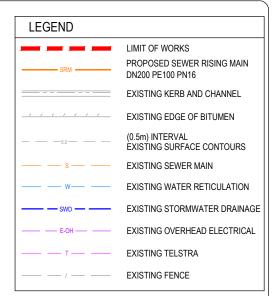

TM3 THE CONTRACTOR SHALL OBTAIN ALL NECESSARY APPROVALS FROM COUNCILS AND OTHER ALTHORITIES

TM4. THE CONTRACTOR SHALL PREPARE AND IMPLEMENT A TRAFFIC MANAGEMENT PLAN PRIOR TO THE

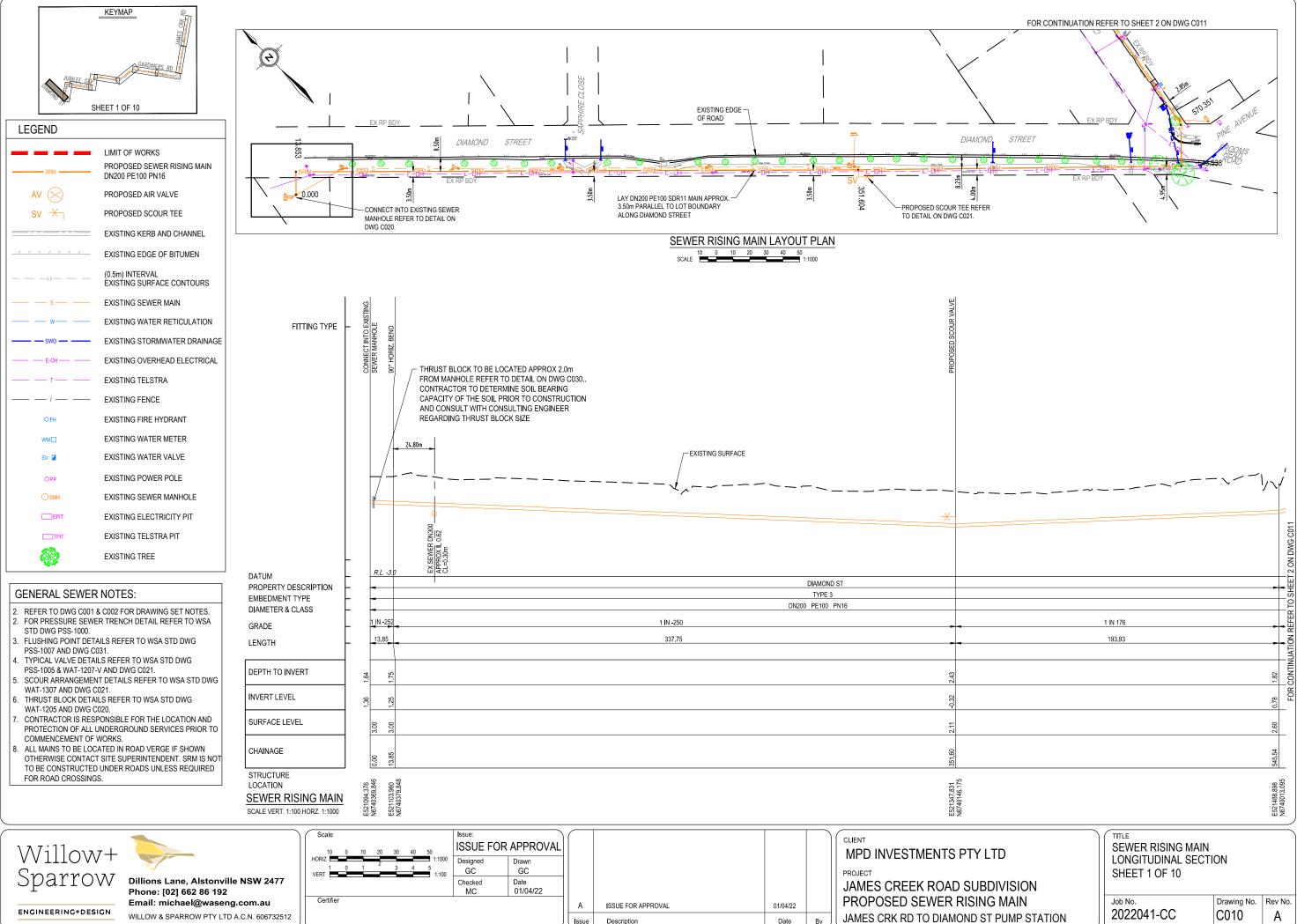
TM5. ALL PERSONNEL MUST WEAR HIGH VISIBILITY VESTS/SHIRTS.

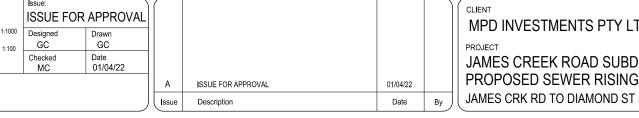


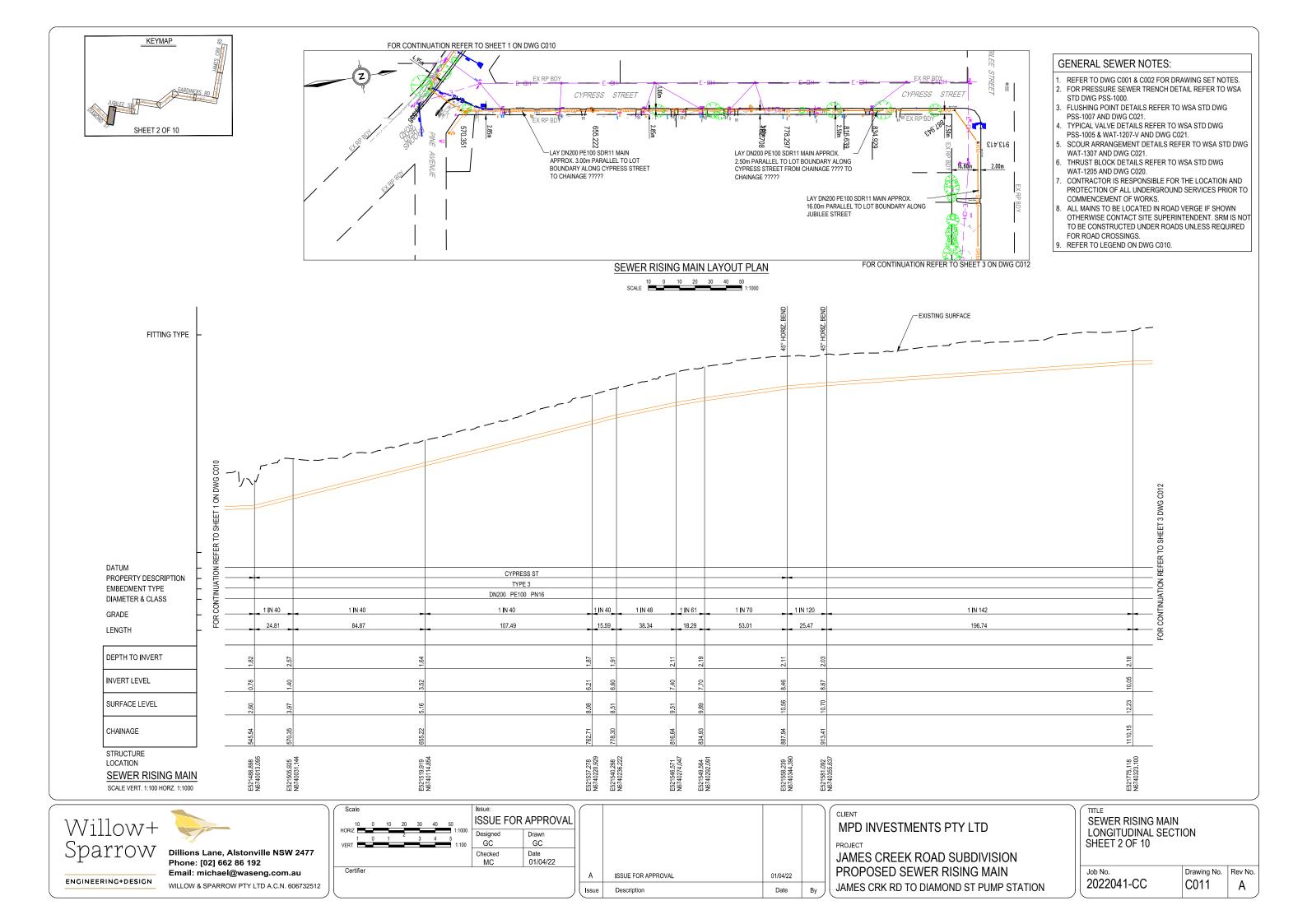
Willow+		Scale 20 10 20 40 60 80 100 SCALE		RAPPROVAL					CLIENT MPD INVESTMENTS PTY LTD
Sparrow	Dillions Lane, Alstonville NSW 2477 Phone: [02] 662 86 192		Designed GC Checked MC	Drawn GC Date 01/04/22					PROJECT JAMES CREEK ROAD SUBDIVISION
ENGINEERING+DESIGN	Email: michael@waseng.com.au WILLOW & SPARROW PTY LTD A.C.N. 606732512	Certifier	MO	01101122	A	ISSUE FOR APPROVAL	01/04/22		PROPOSED SEWER RISING MAIN
	WILLOW & SPARROW PTT LTD A.C.N. 606732512			J	Issue	Description	Date	By	│ ↓ JAMES CRK RD TO DIAMOND ST PUMP STA

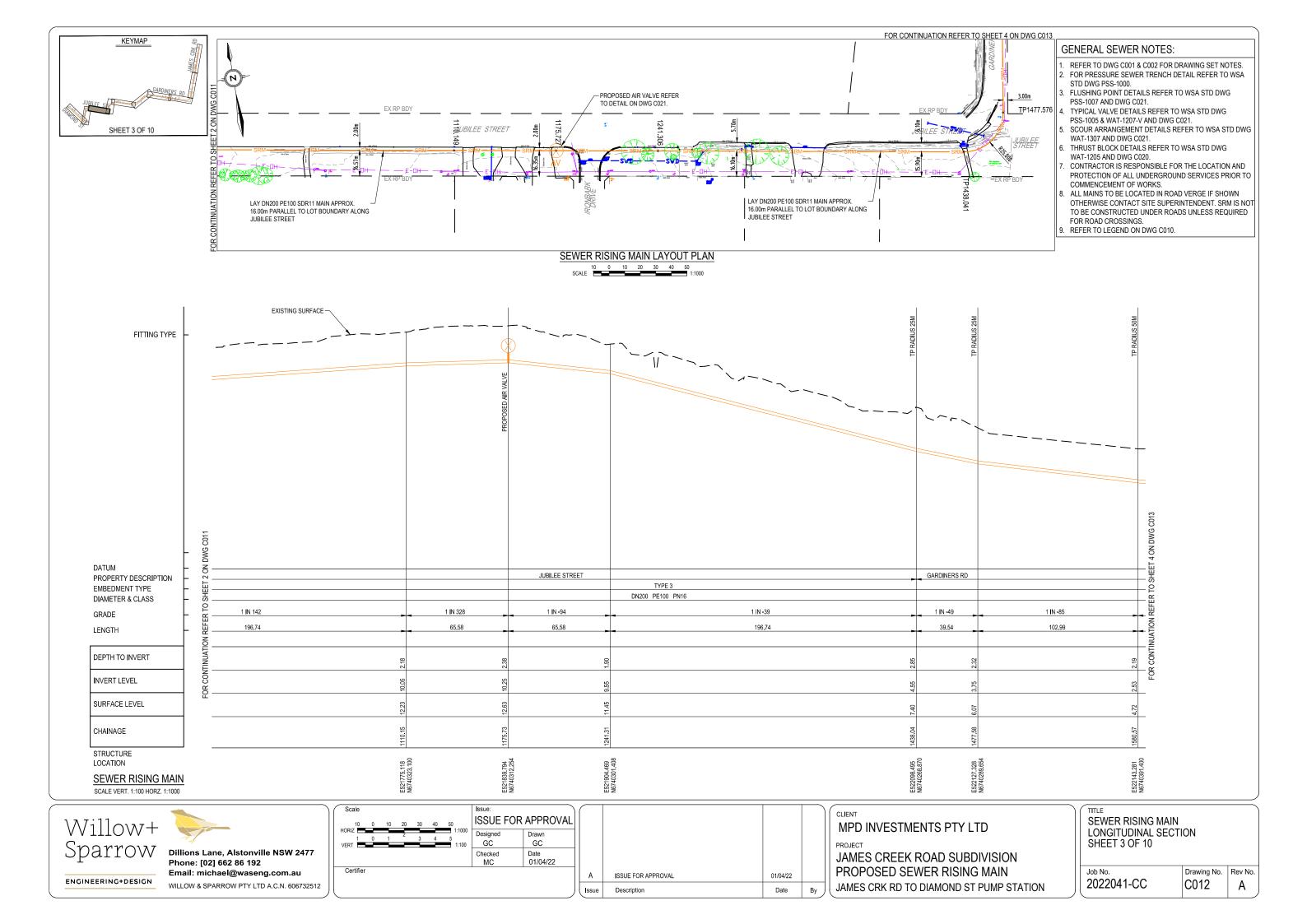


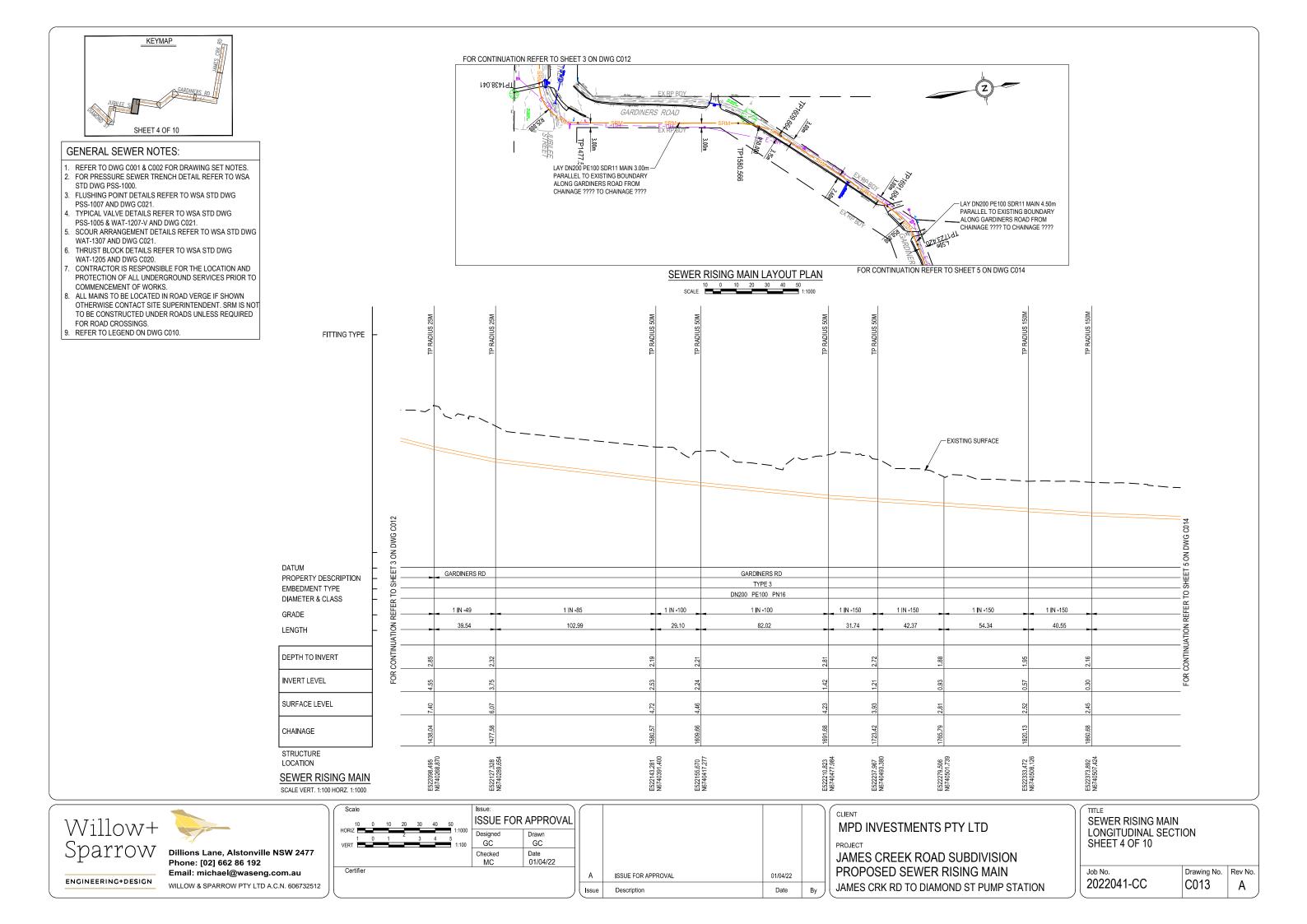
CHAINAGE X COORD Y COORD RADIUS								
			RADIUS					
0.000 13.853	521094.376 521103.960	6740369.846 6740379.848						
351.604	521347.831	6740146.175						
545.538	521488.898	6740013.095						
570.351	521505.925	6740031.144						
655.222	521519.919	6740114.854						
762.708	521537.278 521540.298	6740220.929						
816.639	521540.298	6740274.047						
834.929	521549.564	6740292.091						
887.943	521558.239	6740344.390						
913.413	521581.092	6740355.637						
1110.149	521775.118	6740323.100						
1175.727	521839.794 521904.469	6740312.254 6740301.408						
1438.041	522098.495	6740268.870	25.00					
1477.576	522127.328	6740289.654						
1580.566	522143.281	6740391.400	50.00					
1609.664	522155.670	6740417.277	F 0 0 0 0					
1691.684 1723.420	522210.823 522237.967	6740477.984 6740493.380	50.000					
1765.792	522279.506	6740501.739						
1820.134	522333.472	6740508.126	150.000					
1860.684	522373.892	6740507.424						
2163.803	522673.492	6740461.371	300.00					
2420.018	522912.687 522991.054	6740528.730 6740594.942						
2573.908	523030.237	6740628.049	270.00					
2612.715	523061.576	6740650.881	270.00					
2651.523	523095.861	6740668.990	270.00					
2690.330	523132.387	6740682.001	270.00					
2729.138	523170.401 523209.117	6740689.646	270.00 270.00					
2806.753	523247.737	6740688.321	270.00					
2895.457	523335.296	6740674.113						
2984.161	523422.855	6740659.905						
3072.865	523510.414	6740645.697						
3168.105 3263.344	523604.415 523698.415	6740630.387 6740615.077						
3358.584	523792.416	6740599.766						
3453.823	523886.417	6740584.456						
3680.216	524109.907	6740548.321	118.000					
3864.979	524245.133	6740645.392						
3980.544	524264.149 524277.148	6740759.381 6740838.320						
+211.911	524302.184	6740987.600						
296.742	524315.553	6741071.372						
371.585	524327.784	6741145.208						
446.427	524340.015	6741219.044						
4521.270 4596.112	524352.246 524364.477	6741292.881 6741366.717						
684.012	524378.842	6741453.435						
984.012	524427.868	6741749.402						
5143.042	524453.857	6741906.294						
) (SING MAIN						

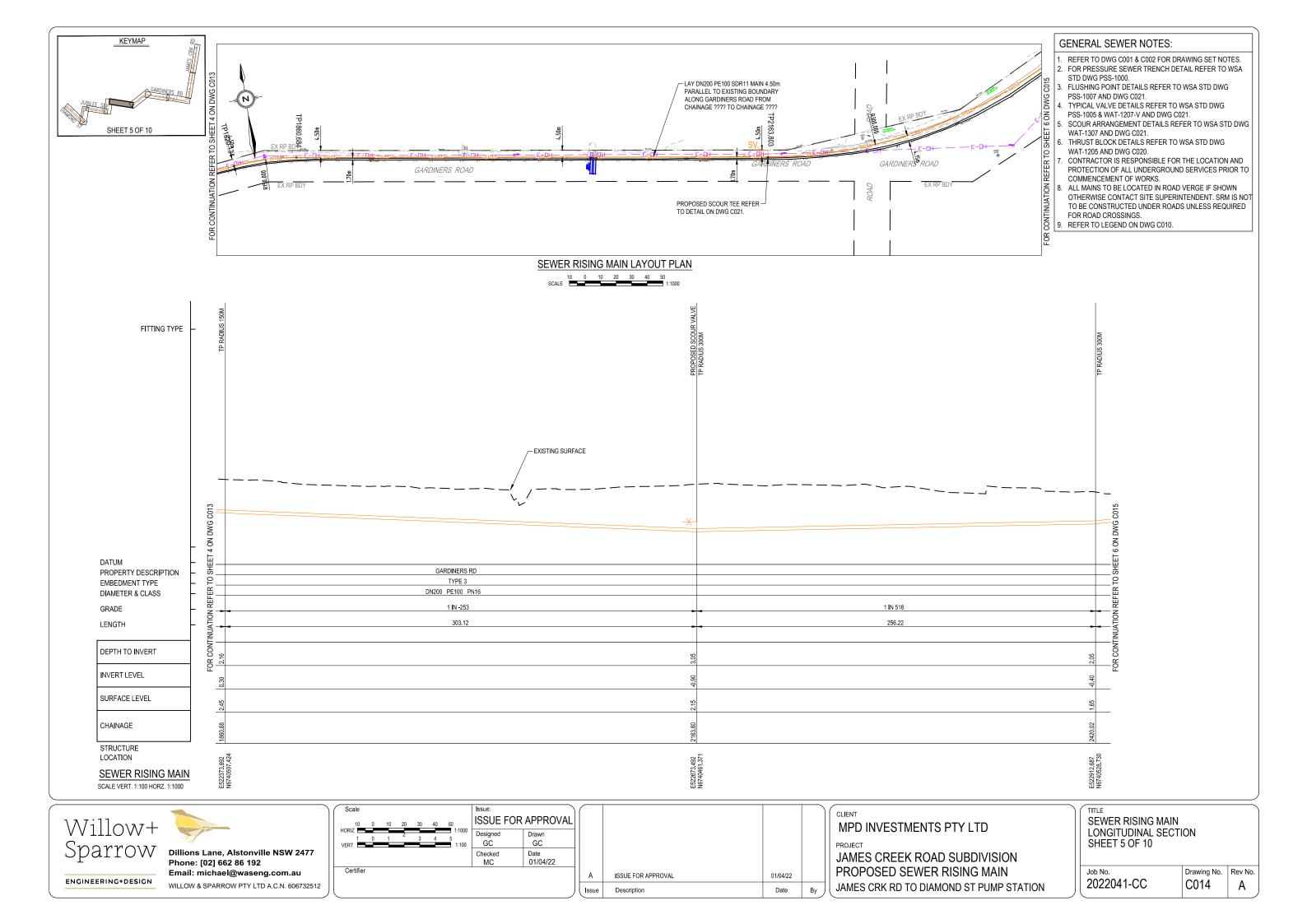

A SEWER RISING MAIN OVERALL LAYOUT PLAN SHEET 1 OF 2 Job No. JMP STATION JOb No. 2022041-CC C003 A

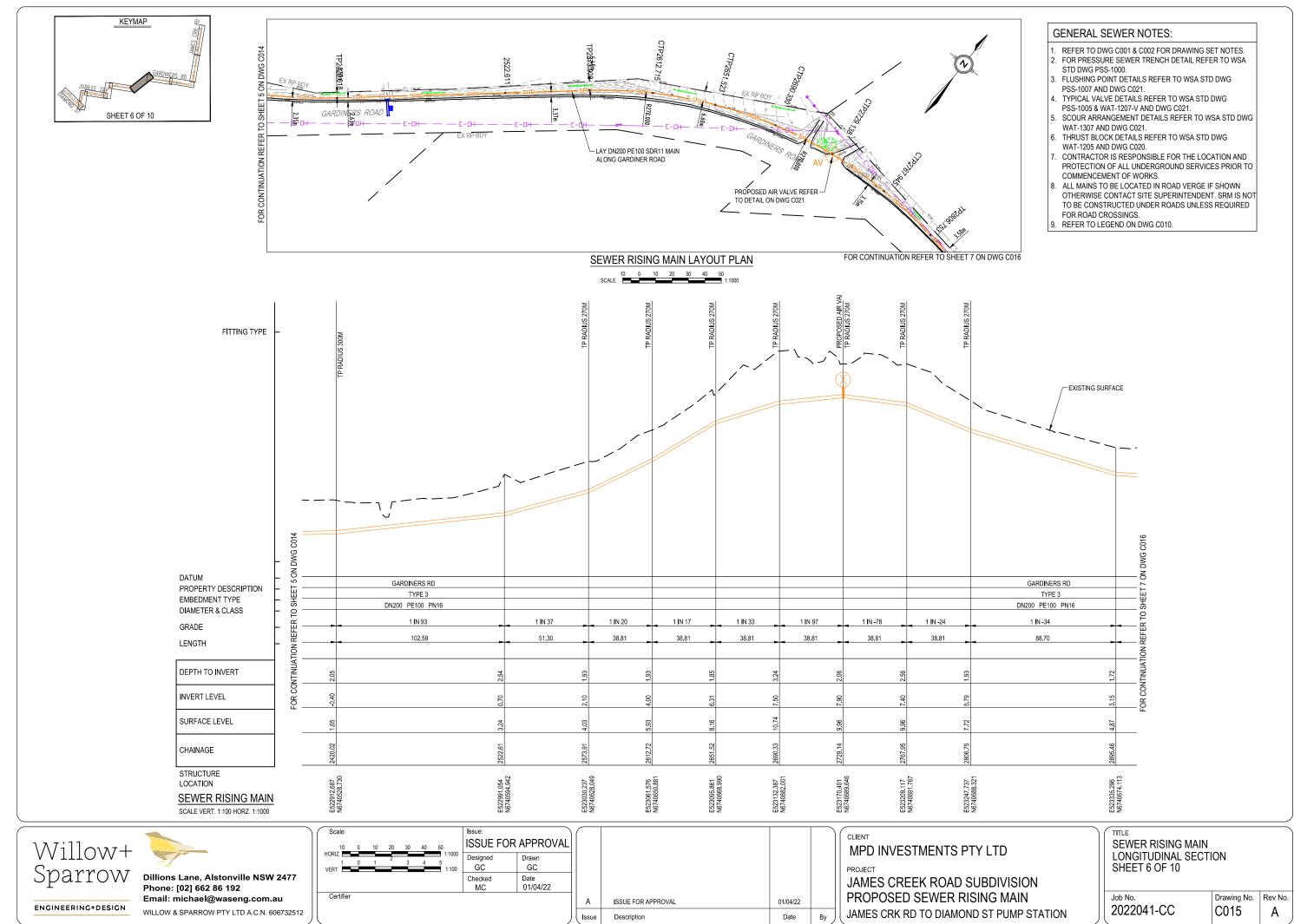


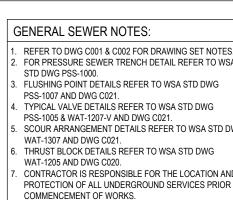

Willow+		20 10 0 20 40 60 80 100 SCALE	ISSUE FOR						CLIENT MPD INVESTMENTS PTY LTD
0			Designed GC	Drawn GC					PROJECT
Sparrow	Dillions Lane, Alstonville NSW 2477 Phone: [02] 662 86 192		Checked MC	Date 01/04/22					JAMES CREEK ROAD SUBDIVISIO
ENGINEERING+DESIGN	Email: michael@waseng.com.au	Certifier			A	ISSUE FOR APPROVAL	01/04/22		PROPOSED SEWER RISING MAIN
	WILLOW & SPARROW PTY LTD A.C.N. 606732512				Issue	Description	Date	Ву	JAMES CRK RD TO DIAMOND ST PUMP S

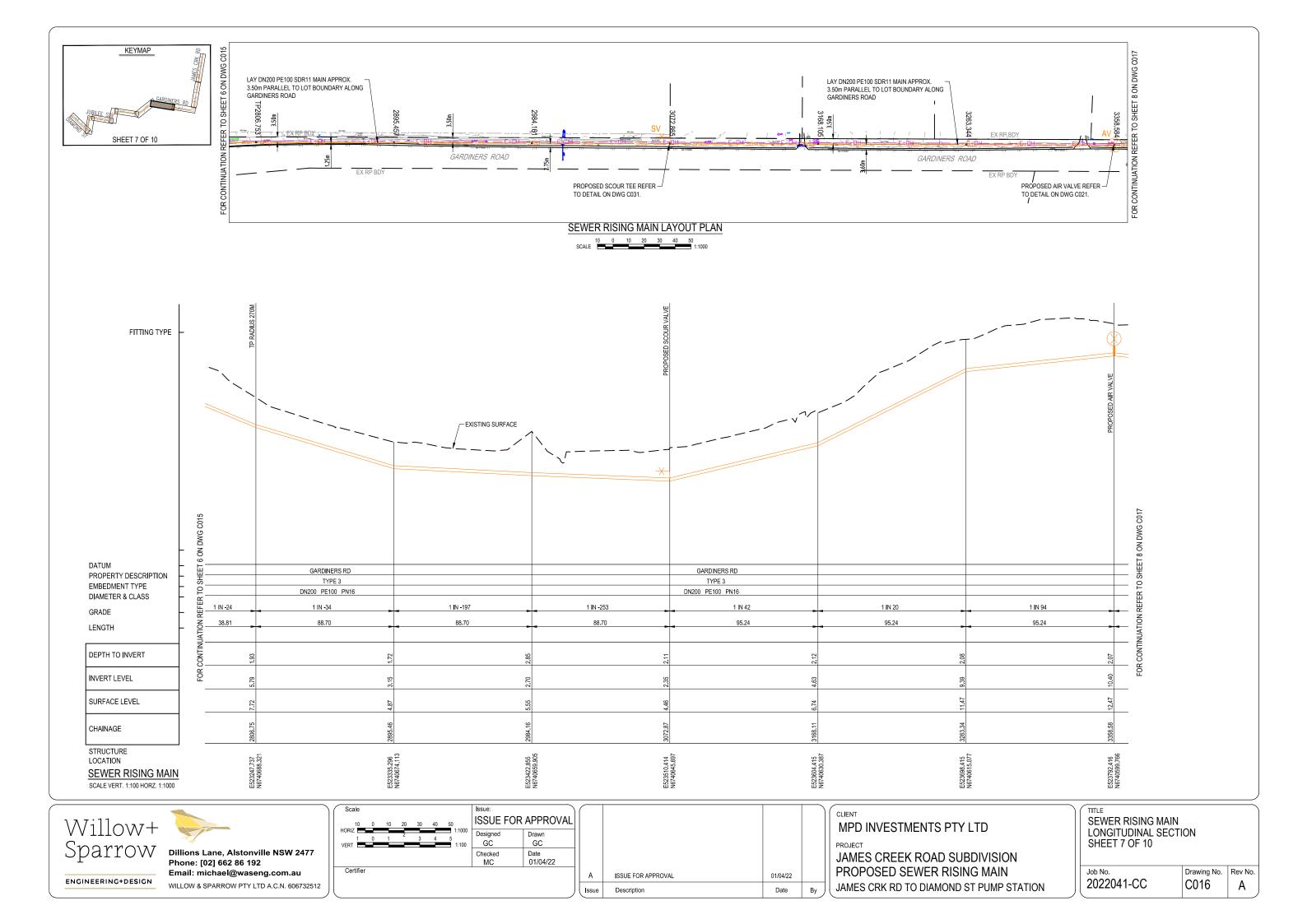


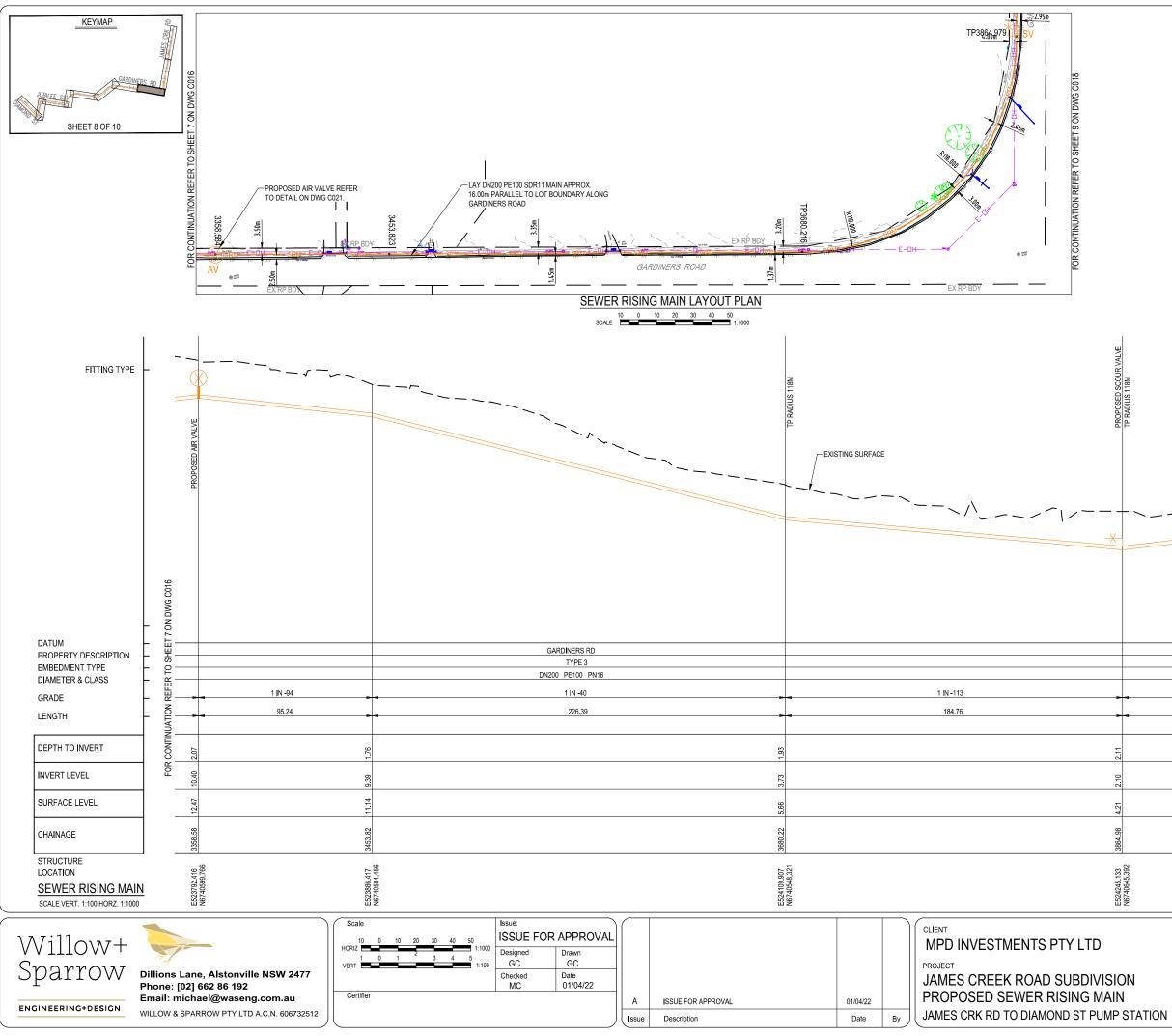

D VISION MAIN UMP STATION

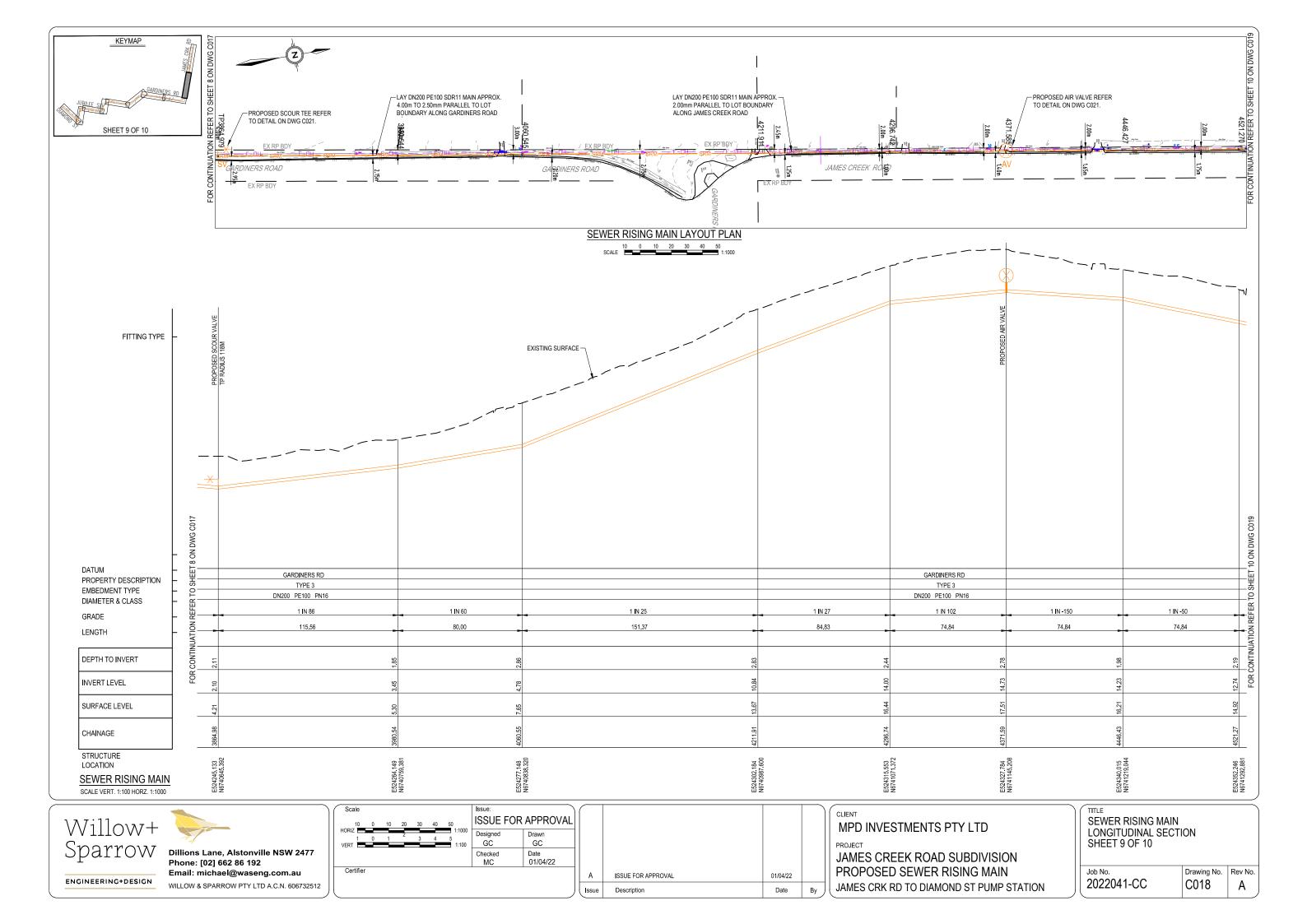


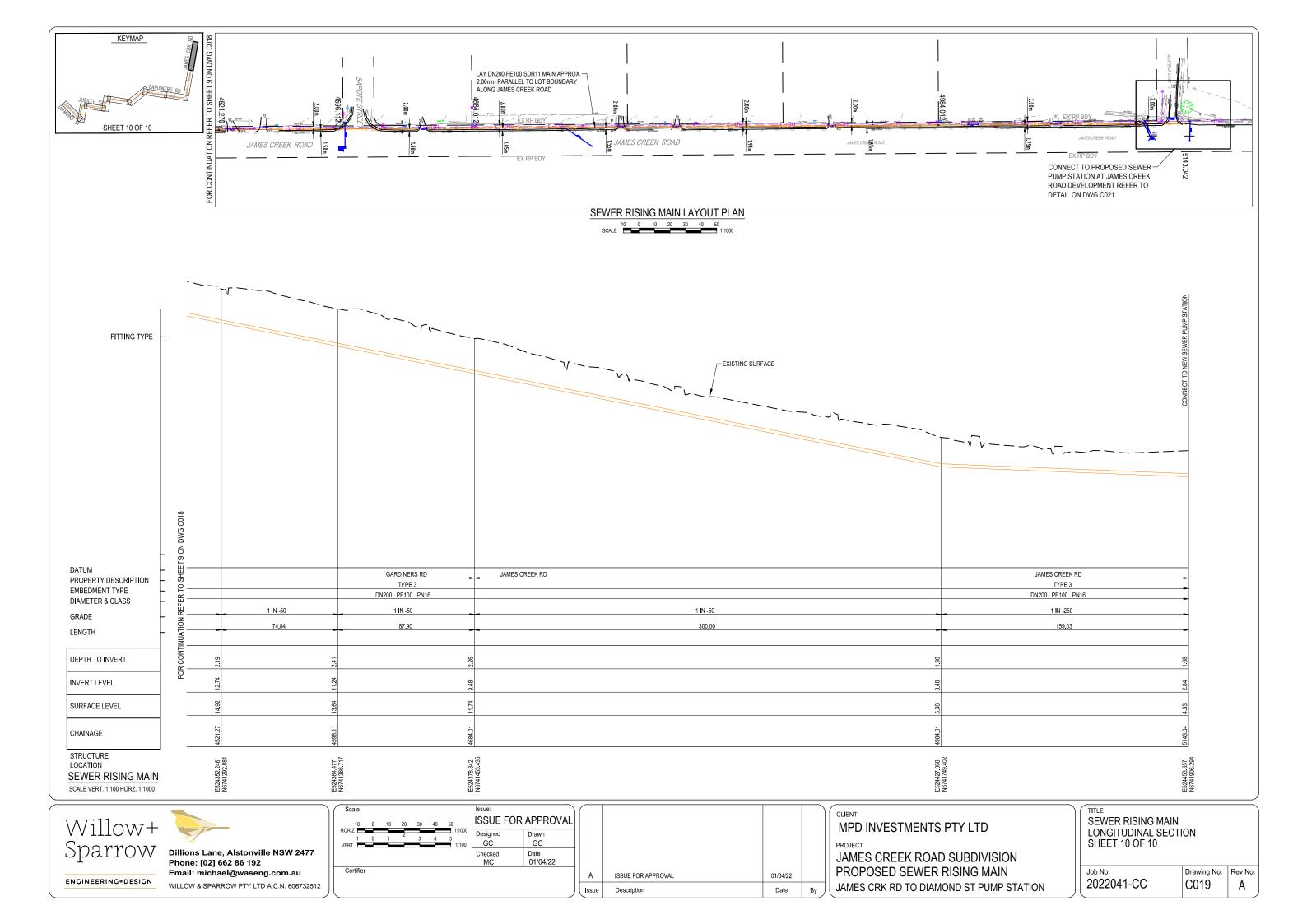


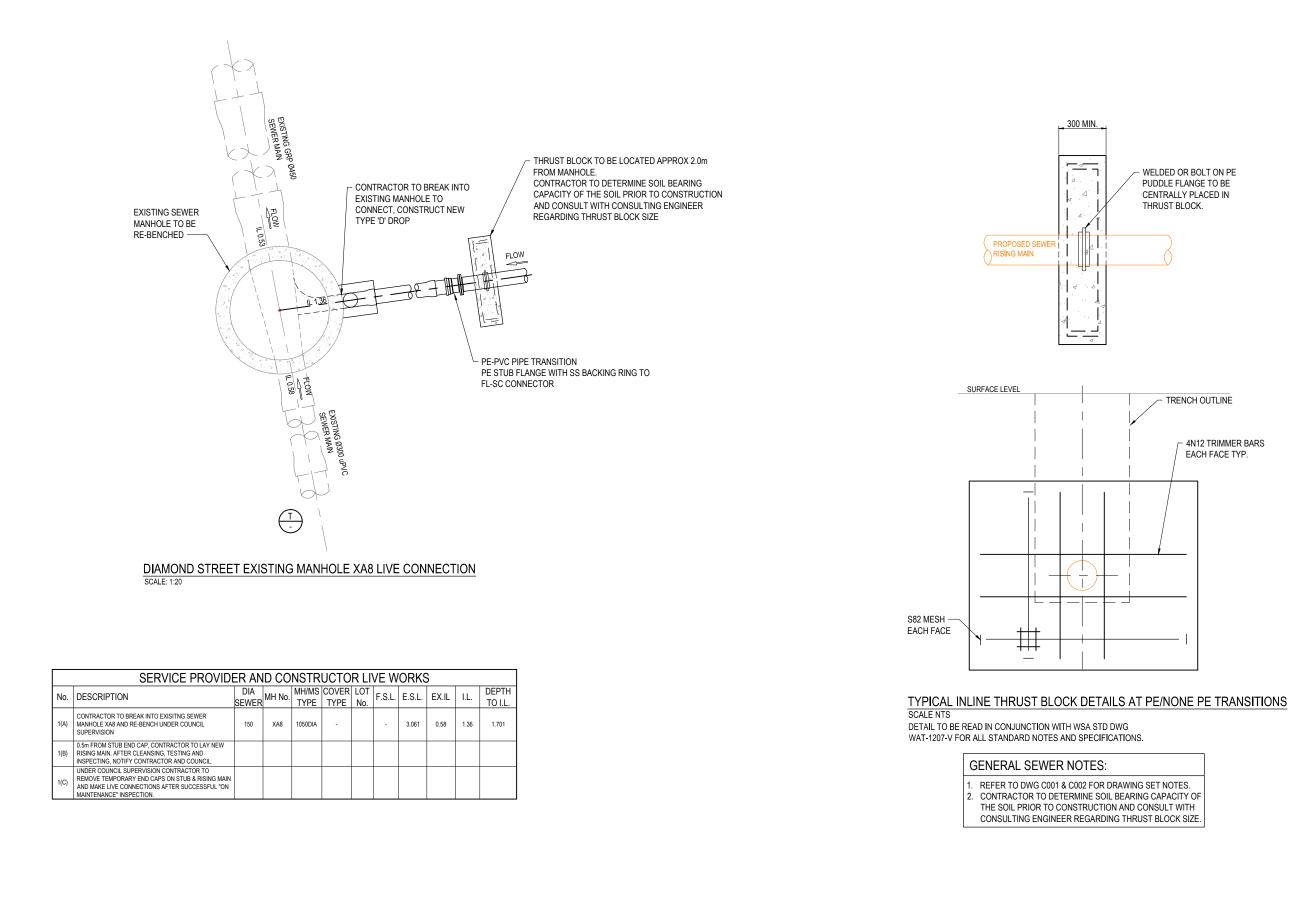


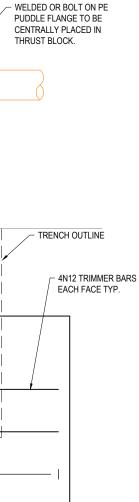


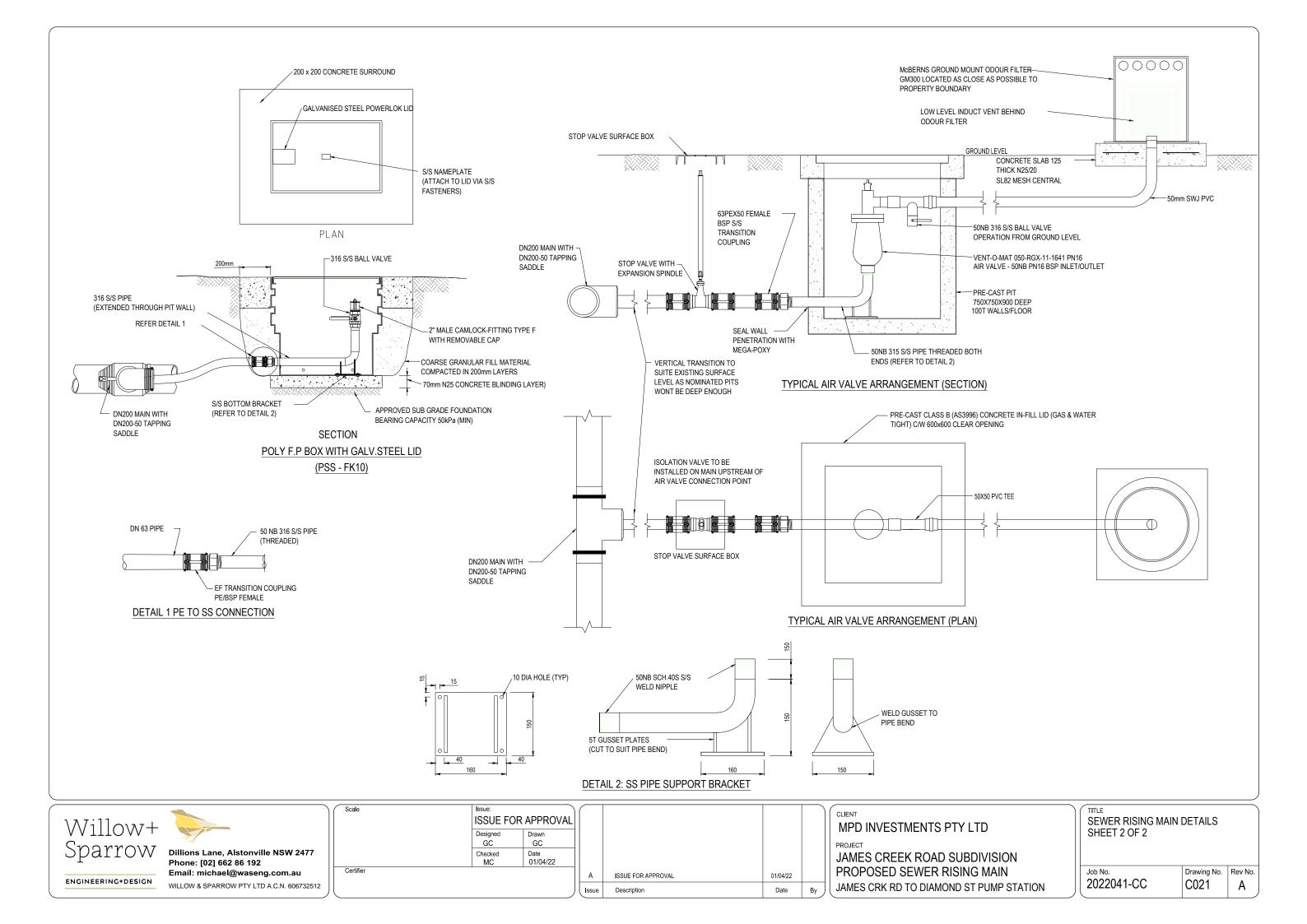









TP RADIUS 118M				1
				SHEET 9 ON DWG C018
	ARDINERS RD TYPE 3			HEET 9
DN20				P
	1 IN 86 115.56			LEF <u>∥</u> T REFER
	110.00	•		
2.11		1 85	3	1TINU/
				FOR CONTINUATION REFER
510		345		F
4.21		£ 30		
3864.98		3080 5.4	t	
E524245.133 N6740645.392			N6740759.381	
) /ISION	SEWER RISING N LONGITUDINAL S SHEET 8 OF 10	MAIN SECTI		
IAIN IMP STATION	Job No. 2022041-CC		Drawing No.	Rev No. A



Willow+		Scale	Issue: ISSUE FOR	RAPPROVAL				\square	CLIENT MPD INVESTMENTS PTY LTD
	7.	SCALE 0.2 0 0.2 0.4 0.6 0.8 1.0	Designed GC	Drawn GC					
Sparrow	Dillions Lane, Alstonville NSW 2477 Phone: [02] 662 86 192		Checked MC	Date 01/04/22					JAMES CREEK ROAD SUBDIV
ENGINEERING+DESIGN	Email: michael@waseng.com.au	Certifier			A	ISSUE FOR APPROVAL	01/04/22		PROPOSED SEWER RISING M
ENGINEERING DESIGN	WILLOW & SPARROW PTY LTD A.C.N. 606732512)	Issue	Description	Date	Ву	JAMES CRK RD TO DIAMOND ST PU

D	SEWER RISING MAIN DETAILS SHEET 1 OF 2							
VISION MAIN UMP STATION	Job No. 2022041-CC	Drawing No.	Rev No.					

